-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCombination Sum III
64 lines (47 loc) · 1.38 KB
/
Combination Sum III
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
Combination Sum III
Medium
4.5K
93
Companies
Find all valid combinations of k numbers that sum up to n such that the following conditions are true:
Only numbers 1 through 9 are used.
Each number is used at most once.
Return a list of all possible valid combinations. The list must not contain the same combination twice, and the combinations may be returned in any order.
Example 1:
Input: k = 3, n = 7
Output: [[1,2,4]]
Explanation:
1 + 2 + 4 = 7
There are no other valid combinations.
Example 2:
Input: k = 3, n = 9
Output: [[1,2,6],[1,3,5],[2,3,4]]
Explanation:
1 + 2 + 6 = 9
1 + 3 + 5 = 9
2 + 3 + 4 = 9
There are no other valid combinations.
Example 3:
Input: k = 4, n = 1
Output: []
Explanation: There are no valid combinations.
Using 4 different numbers in the range [1,9], the smallest sum we can get is 1+2+3+4 = 10 and since 10 > 1, there are no valid combination.
Constraints:
2 <= k <= 9
1 <= n <= 60
code:-
class Solution:
def combinationSum3(self, k: int, n: int) -> List[List[int]]:
op=[]
def comb(k,n,i,op,tem,last):
if i==k:
if n==0:
op.append(tem.copy())
return
for j in range(last+1,10):
if j<=n:
tem.append(j)
comb(k,n-j,i+1,op,tem,j)
tem.pop(-1)
comb(k,n,0,op,[],0)
return op