forked from reactorlabs/sourir
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransform.ml
169 lines (158 loc) · 6.1 KB
/
transform.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
open Instr
open Types
(* combining transformations *)
let combine_transform_instructions ts ({formals; instrs} as inp : analysis_input) : instructions option =
let changed, res =
List.fold_left (fun (changed, inp) t ->
match t inp with
| None -> (changed, inp)
| Some instrs -> (true, {instrs; formals})) (false, inp) ts in
if changed then Some res.instrs else None
let combine_opt ts inp =
let changed, res =
List.fold_left (fun (changed, inp) t ->
match t inp with
| None -> (changed, inp)
| Some out -> (true, out)) (false, inp) ts in
if changed then Some res else None
let try_opt t inp =
match t inp with
| None -> inp
| Some out -> out
(* generalizing transformations *)
let as_opt_function (transformation : transform_instructions) : opt_function =
fun func ->
let version = Instr.active_version func in
let inp = Analysis.as_analysis_input func version in
match transformation inp with
| None -> None
| Some instrs ->
let res = {
label = version.label;
instrs;
annotations = None } in
Some (Instr.replace_active_version func res)
let as_opt_program (transform : opt_function) : opt_prog =
let transform' instrs =
match transform instrs with
| None -> false, instrs
| Some instrs -> true, instrs in
fun prog ->
let changed, main =
transform' prog.main
in
let reduce (changed, functions) func =
let c, f = transform' func in
(changed||c, f::functions) in
let changed, functions = List.fold_left reduce (changed, []) prog.functions in
let functions = List.rev functions in
if changed then Some { functions; main; } else None
let optimistic_as_opt_function (transformation : create_optimistic_version)
(cleanup : transform_instructions) : opt_function =
let cleanup ({instrs} as inp) =
match cleanup inp with
| None -> instrs
| Some instrs -> instrs in
fun func ->
match transformation func with
| None -> None
| Some version ->
let inp = Analysis.as_analysis_input func version in
let cleaned = cleanup inp in
let version = { version with instrs = cleaned } in
Some { func with body = version :: func.body }
(* All available optimizations *)
let cleanup_all_instrs = combine_transform_instructions [
Transform_cleanup.remove_unreachable_code;
Transform_cleanup.remove_unused_decl;
Transform_cleanup.remove_jmp;]
let minimize_liverange_instrs = combine_transform_instructions [
Transform_cleanup.remove_unused_decl;
Transform_liveness.minimize_liverange; ]
let const_fold_instrs = combine_transform_instructions [
Transform_constantfold.const_fold;
Transform_cleanup.remove_unused_decl;]
let normalize_graph_instrs = combine_transform_instructions [
Transform_fix.remove_falltrough;
Transform_fix.make_branch_targets_unique;]
let cleanup_all = as_opt_function cleanup_all_instrs
let const_fold = as_opt_function const_fold_instrs
let minimize_liverange = as_opt_function minimize_liverange_instrs
let hoist_assignment = as_opt_function Transform_hoist_assign.hoist_assignment
let hoist_drop = as_opt_function Transform_hoist.Drop.apply
let activate_assumptions = optimistic_as_opt_function
(Transform_assumption.activate_assumptions)
(combine_transform_instructions [
Transform_cleanup.remove_unreachable_code;])
let branch_prune_instrs = combine_transform_instructions [
Transform_prune.branch_prune;
Transform_cleanup.remove_unreachable_code;]
let branch_prune = as_opt_function branch_prune_instrs
let branch_prune_true = optimistic_as_opt_function
(Transform_prune.insert_branch_pruning_assumption ~prune:true)
branch_prune_instrs
let branch_prune_false = optimistic_as_opt_function
(Transform_prune.insert_branch_pruning_assumption ~prune:false)
branch_prune_instrs
let branch_prune_false_no_hoist = optimistic_as_opt_function
(Transform_prune.insert_branch_pruning_assumption ~prune:false ~hoist:false)
branch_prune_instrs
let normalize_graph = as_opt_program (as_opt_function normalize_graph_instrs)
(* Main optimizer loop *)
exception UnknownOptimization of string
let all_opts = ["prune_true";
"prune_false";
"prune";
"prune_false_no_hoist";
"hoist_guards";
"const_fold";
"hoist_assign";
"hoist_drop";
"min_live";
"inline_small"]
let manual_opts = ["inline_med";
"inline_max"]
let optimize (opts : string list) (num : int) (prog : program) : program option =
let optimizer = function
| "hoist_assign" ->
as_opt_program hoist_assignment
| "hoist_drop" ->
as_opt_program hoist_drop
| "min_live" ->
as_opt_program minimize_liverange
| "const_fold" ->
as_opt_program const_fold
| "prune_false_no_hoist" ->
as_opt_program branch_prune_false_no_hoist
| "prune_false" ->
as_opt_program branch_prune_false
| "prune_true" ->
as_opt_program branch_prune_true
| "prune" ->
as_opt_program branch_prune
| "hoist_guards" ->
as_opt_program (as_opt_function Transform_assumption.hoist_assumption)
| "inline_max" ->
Transform_inline.inline ()
| "inline_med" ->
Transform_inline.inline ~max_depth:2 ~max_inlinings:6 ~max_size:220 ()
| "inline_small" ->
Transform_inline.inline ~max_depth:1 ~max_inlinings:1 ~max_size:140 ()
| o ->
raise (UnknownOptimization o)
in
(* The strategy is to run all user selected optimizations for num times, then
* remove empty checkpoints, then run the optimizations once again. *)
let optimizers = (List.map optimizer opts) @ [(as_opt_program cleanup_all)] in
let optimizer = combine_opt optimizers in
let opt_runs = Array.to_list (Array.make num optimizer) in
let final_optimizer =
combine_opt ([
(as_opt_program Transform_assumption.insert_checkpoints);
as_opt_program activate_assumptions; ] @
opt_runs @ [
Transform_assumption.remove_empty_checkpoints;
optimizer;
])
in
final_optimizer prog