-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy patheeg_mergechannels.m
385 lines (338 loc) · 14.3 KB
/
eeg_mergechannels.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
% EEG_MERGECHANNELS - merge the channels of two EEG structure based on
% common event types latencies. This is useful for
% aligning the data from 2 subjects recorded
% simultaneously or from 2 modalities in the same
% subject or to merge hyperscanning data.
% Usage:
% >> [MERGEDEEG, EEG2PRIME] = eeg_mergechannels(EEG1, EEG2, varargin);
% Inputs:
% EEG1 - first EEGLAB dataset
% EEG2 - second EEGLAB dataset to be aligned with the first one.
%
% Optional inputs:
% 'finalevents' - ['first'|'second'|'merge'|'mergediff'] how should the
% final events look like. 'first' uses only the event from
% the first dataset. 'second' uses only the event from
% the second dataset after recalculating their latency.
% 'merge' merges the events. 'mergediff' (the default)
% only merge the events from the second data which are not
% in the first one.
%
% Output:
% MERGEDEEG - output EEG structure with the two datasets merged. The
% merged dataset has the same sample as EEG1 and additional
% channels from EEG2.
%
% Example:
% EEG1.event = struct('type', {'a' 'b' 'c' 'c' 'd' 'f' });
% EEG2.event = struct('type', {'a' 'c' 'c' 'e' 'f' });
% eeg_mergechannels(EEG1, EEG2)
%
% Author: Arnaud Delorme and Deepa Gupta, 2023
% Copyright (C) Arnaud Delorme, arno@ucsd.edu
%
% This file is part of EEGLAB, see http://www.eeglab.org
% for the documentation and details.
%
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are met:
%
% 1. Redistributions of source code must retain the above copyright notice,
% this list of conditions and the following disclaimer.
%
% 2. Redistributions in binary form must reproduce the above copyright notice,
% this list of conditions and the following disclaimer in the documentation
% and/or other materials provided with the distribution.
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
% THE POSSIBILITY OF SUCH DAMAGE.
function [MERGEDEEG, errorvals] = eeg_mergechannels(EEG1, EEG2, varargin)
if nargin < 2
help eeg_mergechannels
return
end
g = finputcheck( varargin, { ...
'eventfield1' 'string' {} '';
'eventfield2' 'string' {} '';
'tolerance' 'real' {} 10;
'verbose' 'string' {'on' 'off'} 'on';
'finalevents' 'string' { 'first' 'second' 'merge' 'mergediff' } 'mergediff';
} );
if ischar(g)
error(g)
end
if EEG1.trials > 1 || EEG2.trials > 1
error('The eeg_mergechannels can only process continuous data')
end
% find matching event types
% -------------------------
evenType1 = cellfun(@num2str, { EEG1.event.type }, 'uniformoutput', false);
evenType2 = cellfun(@num2str, { EEG2.event.type }, 'uniformoutput', false);
evenType1 = cellfun(@deblank, evenType1, 'uniformoutput', false);
evenType2 = cellfun(@deblank, evenType2, 'uniformoutput', false);
remainingEvents = true;
counter1 = 1;
counter2 = 1;
matchingEvents1 = [];
matchingEvents2 = [];
while counter1 <= length(EEG1.event) && counter2 <= length(EEG2.event)
ind1 = strmatch(evenType2{counter2}, evenType1(counter1:end), 'exact');
ind2 = strmatch(evenType1{counter1}, evenType2(counter2:end), 'exact');
if length(ind1) > 1, ind1 = ind1(1); end
if length(ind2) > 1, ind2 = ind2(1); end
bothNonEmpty = ~isempty(ind1) && ~isempty(ind2);
if bothNonEmpty && ind1 == 1 && ind2 == 1
matchingEvents1 = [matchingEvents1 counter1];
matchingEvents2 = [matchingEvents2 counter2];
counter1 = counter1+1;
counter2 = counter2+1;
elseif (isempty(ind1) && ~isempty(ind2)) || (bothNonEmpty && ind2 < ind1)
matchingEvents1 = [matchingEvents1 counter1];
matchingEvents2 = [matchingEvents2 ind2+counter2-1];
counter1 = counter1+1;
counter2 = ind2+counter2;
elseif (isempty(ind2) && ~isempty(ind1)) || (bothNonEmpty && ind1 < ind2)
matchingEvents2 = [matchingEvents2 counter2];
matchingEvents1 = [matchingEvents1 ind1+counter1-1];
counter2 = counter2+1;
counter1 = ind1+counter1;
elseif bothNonEmpty && ind1 == ind2
error('Issue in matching event sequences');
else
counter1 = counter1+1;
counter2 = counter2+1;
end
end
% search for common events and count them
% ---------------------------------------
[commonEvents,ind1,ind2] = intersect(evenType1, evenType2);
if length(evenType1) - length(removeevents(evenType1, commonEvents)) > length(matchingEvents1)
fprintf(2, 'Some common events were missed, check event structures\n');
elseif length(evenType2) - length(removeevents(evenType2, commonEvents)) > length(matchingEvents2)
fprintf(2, 'Some common events were missed, check event structures\n');
end
event1str = evenType1(matchingEvents1);
event2str = evenType2(matchingEvents2);
if strcmpi(g.verbose, 'on')
fprintf('Matching events structure 1 are ');
for iEvent = 1:length(matchingEvents1)
fprintf('%s(%d)\t', event1str{iEvent}, matchingEvents1(iEvent));
end
fprintf('\n');
fprintf('Matching events structure 2 are ');
for iEvent = 1:length(matchingEvents2)
fprintf('%s(%d)\t', event2str{iEvent}, matchingEvents2(iEvent));
end
fprintf('\n');
end
% now align the two structures
% find matching fields (assuming correct orders)
% eventstruct = importevent(EEG1.event, EEG2.event, EEG1.srate)
% first change sampling rate of second input
% ------------------------------------------
latency1 = [EEG1.event(matchingEvents1).latency];
latency2 = [EEG2.event(matchingEvents2).latency];
if length(latency1) < 2
error('At least two common events are needed to align datasets')
elseif length(latency1) == 2
fprintf(2, 'Two common events have been found. This is enough to align the two datasets but not to check that the alignment is consistent accross all events.')
end
[~, ~, ~, slope, intercept] = fastregress(latency1, latency2);
func1to2 = @(x)x*slope+intercept;
func2to1 = @(x)(x-intercept)/slope;
latency2in1 = func2to1(latency2);
errorvals = round(abs(latency2in1-latency1));
if strcmpi(g.verbose, 'on')
fprintf('Event offset for dataset 1 vs 2 (compare the two rows):\n')
% show the difference
for iEvent = 1:min(50, length(latency1))
fprintf('%8s ', sprintf('%1.1f', latency1(iEvent)));
end
fprintf('\n');
for iEvent = 1:min(50, length(latency2in1))
fprintf('%8s (off by %3d ms) ', sprintf('%1.1f', latency2in1(iEvent)), round(abs(latency2in1(iEvent)-latency1(iEvent))));
end
end
% check alignment
flag = false;
for iEvent = 1:min(50, length(latency2in1))
if round(abs(latency2in1(iEvent)-latency1(iEvent))) > g.tolerance
flag = true;
end
end
if flag
figure; plot(latency1, latency2, '.');
error('Alignment within %1.1f millisecond failed. Increase tolerance.', g.tolerance);
end
fprintf('\n');
% get the samples to interpolate and interpolate each channel
% -----------------------------------------------------------
samples = func1to2(1:EEG1.pnts);
MERGEDEEG = EEG1;
MERGEDEEG.data(end+EEG2.nbchan,:) = 0;
if strcmpi(g.verbose, 'on')
fprintf('Interpolating channels:')
end
for iChan = 1:EEG2.nbchan
MERGEDEEG.data(MERGEDEEG.nbchan+iChan,:) = interp1(1:EEG2.pnts, EEG2.data(iChan,:), samples, 'lin', 0);
if strcmpi(g.verbose, 'on')
fprintf('.');
end
end
if strcmpi(g.verbose, 'on')
fprintf('\n')
end
MERGEDEEG.nbchan = size(MERGEDEEG.data,1);
% merge channels
% --------------
if ~isempty(MERGEDEEG.chanlocs) || ~isempty(EEG2.chanlocs)
if isempty(MERGEDEEG.chanlocs)
for iChan = 1:EEG1.nbchan
MERGEDEEG.chanlocs(iChan).labels = [ 'E' num2str(iChan) ];
end
end
if isempty(EEG2.chanlocs)
for iChan = 1:EEG2.nbchan
EEG2.chanlocs(iChan).labels = [ 'E' num2str(iChan) ];
end
end
fields = fieldnames(EEG2.chanlocs);
for iChan = 1:length(EEG2.chanlocs)
for iField = 1:length(fields)
MERGEDEEG.chanlocs(EEG1.nbchan+iChan).(fields{iField}) = EEG2.chanlocs(iChan).(fields{iField});
end
end
end
% shift events from first dataset
% for iEvent = 1:length(MERGEDEEG.event)
% MERGEDEEG.event(iEvent).latency = MERGEDEEG.event(iEvent).latency-9;
% end
% add events from second dataset
% ------------------------------
if ~strcmpi(g.finalevents, 'first')
if strcmpi(g.finalevents, 'second')
MERGEDEEG.event = [];
elseif strcmpi(g.finalevents, 'merge')
nonMatchingEvents2 = 1:length(EEG2.event);
else
nonMatchingEvents2 = setdiff(1:length(EEG2.event), matchingEvents2);
end
fields = fieldnames(EEG2.event);
fields = setdiff(fields, 'latency');
if ~isempty(nonMatchingEvents2) && isfield(EEG2.event, 'latency')
for iEvent = nonMatchingEvents2(:)'
MERGEDEEG.event(end+1).latency = func2to1(EEG2.event(iEvent).latency);
for iField = 1:length(fields)
MERGEDEEG.event(end).(fields{iField}) = EEG2.event(iEvent).(fields{iField});
end
end
end
allLatencies = [ MERGEDEEG.event.latency ];
if length( MERGEDEEG.event ) == length(allLatencies)
[~,inds] = sort(allLatencies);
MERGEDEEG.event = MERGEDEEG.event(inds);
else
error('Issue with empty latency field')
end
MERGEDEEG = eeg_checkset(MERGEDEEG, 'eventconsistency');
end
return
% legacy code using the resampling method
ratio = EEG2.srate/EEG1.srate;
initcond = [ratio latency2(1)-latency1(1)*ratio]; % srate_ratio then offset
func = @(x)mean(abs(x(1)*latency1-latency2+x(2)));
%func2 = @(x)mean(abs(ratio*latency1-latency2+x(2)));
try
newfactor = fminsearch(@(x)func(x), initcond, optimset('MaxIter',10000));
catch
error('Missing function fminsearch.m - Octave users, run "pkg install -forge optim" to install missing package and try again');
end
%newfactor(2) = latency2(1)-latency1(1);
newfactor = [slope intercept];
fprintf('Ratio of sampling rate is %1.5f (%1.0f vs %1.0f) optimized to %1.5f\n', EEG2.srate/EEG1.srate, EEG1.srate, EEG2.srate, newfactor(1))
fprintf('Event offset is %1.1f samples or %1.1f seconds\n', newfactor(2), newfactor(2)/EEG2.srate)
fprintf('Event offset (compare row 1 and 2): ');
latency1corrected = (latency2 - newfactor(2))/newfactor(1);
for iEvent = 1:min(50, length(latency1))
fprintf('%8s ', sprintf('%1.1f', latency1(iEvent)));
end
fprintf('\n ');
for iEvent = 1:min(50, length(latency2))
fprintf('%8s (off by %3d ms) ', sprintf('%1.1f', latency1corrected(iEvent)), round(abs(latency1corrected(iEvent)-latency1(iEvent))));
end
fprintf('\n');
% offset raw EEG2 to match EEG1
% -----------------------------
newsrate = round(100*EEG2.srate/newfactor(1))/100;
fprintf('Resampling second dataset to %1.2f (to best match first dataset %1.1% sampling rate\n', newsrate, EEG1.srate)
TMPEEG2 = pop_resample(EEG2, newsrate);
% shift data
% ----------
originalOffset = round(newfactor(2)/newfactor(1));
fprintf('Shift origin of second dataset by %d samples to match first dataset\n', originalOffset)
if originalOffset > 0
TMPEEG2.data(:,1:originalOffset) = [];
elseif originalOffset < 0
TMPEEG2.data = [ zeros(TMPEEG2.nbchan, -originalOffset) TMPEEG2.data ];
end
for iEvent = 1:length(TMPEEG2.event)
TMPEEG2.event(iEvent).latency = TMPEEG2.event(iEvent).latency - originalOffset;
end
if size(TMPEEG2.data,2) < size(EEG1.data,2)
fprintf('Padding second dataset with %d samples so it matches the length of the first one\n', size(EEG1.data,2)-size(TMPEEG2.data,2))
TMPEEG2.data(:,end+1:size(EEG1.data,2)) = 0;
elseif size(TMPEEG2.data,2) > size(EEG1.data,2)
fprintf('Removing second dataset %d trailing samples so it matches the length of the first one\n', size(EEG1.data,2)-size(TMPEEG2.data,2))
TMPEEG2.data(:,size(EEG1.data,2)+1:end) = [];
end
% merge datasets
% --------------
MERGEDEEG = EEG1;
TMPEEG2.event(matchingEvents2) = [];
MERGEDEEG.data(end+1:end+TMPEEG2.nbchan,:) = TMPEEG2.data;
fields = fieldnames(TMPEEG2.chanlocs);
inds = length(MERGEDEEG.chanlocs)+1:length(MERGEDEEG.chanlocs)+1+TMPEEG2.nbchan-1;
if ~isempty(TMPEEG2.chanlocs)
for iField = 1:length(fields)
[MERGEDEEG.chanlocs(inds).(fields{iField})] = deal(TMPEEG2.chanlocs.(fields{iField}));
end
elseif ~isempty(EEG1.chanlocs)
MERGEDEEG.chanlocs(end+length(TMPEEG2.chanlocs)).labels = '';
end
fields = fieldnames(TMPEEG2.event);
inds = length(MERGEDEEG.event)+1:length(MERGEDEEG.event)+1+length(TMPEEG2.event)-1;
if ~isempty(TMPEEG2.event)
for iField = 1:length(fields)
[MERGEDEEG.event(inds).(fields{iField})] = deal(TMPEEG2.event.(fields{iField}));
end
end
MERGEDEEG = eeg_checkset(MERGEDEEG, 'eventconsistency');
% return a modified version of EEG2 with changed sampling rate and samples removed
% --------------------------------------------------------------------------------
EEG2PRIME = EEG2;
EEG2PRIME.srate = EEG1.srate*newfactor(1);
eeg2offset = round(originalOffset * newfactor(1));
if originalOffset > 0
EEG2PRIME = pop_select(EEG2PRIME, 'rmpoint', [ 1 eeg2offset ]);
elseif originalOffset < 0
EEG2PRIME.data = [ zeros(EEG2PRIME.nbchan, -eeg2offset) EEG2PRIME.data ];
for iEvent = 1:length(EEG2PRIME.event)
EEG2PRIME.event(iEvent).latency = EEG2PRIME.event(iEvent).latency + eeg2offset;
end
end
% remove event types from list
% ----------------------------
function allevents = removeevents(allevents, rmlist)
for iEvent = 1:length(rmlist)
inds = strmatch(allevents, rmlist{iEvent}, 'exact');
allevents(inds) = [];
end