-
Notifications
You must be signed in to change notification settings - Fork 1
/
pop_prop_extended.m
executable file
·751 lines (695 loc) · 29.9 KB
/
pop_prop_extended.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
function [fh, EEG, com] = pop_prop_extended(EEG, typecomp, chanorcomp, winhandle, spec_opt, erp_opt, scroll_event, classifier_name, varargin)
% POP_PROP_EXTENDED See various common properties of an EEG channel or component
% Creates a figure containing a scalp topography or channel location,
% erpimage of the data, power spectral density creaty by spectopo(), a
% scrolling plot of activity with events and epoch markings overlaid, and
% dipole locations and residual variance if showing component properties
% and dipole information is already present in the EEG structure. If
% called with only the first two arguments, a GUI opens to select the
% rest. If only one argument is given, typecomp will be set to channels
% (1) and the GUI will open.
%
% Inputs
% EEG: EEGLAB EEG structure
% typecomp: 0 for component, 1 for channel
% chanorcomp: channel or component index to plot
% winhandle: pass NaN, used for compatability with component rejection
% spec_opt: cell array of options which are passed to spectopo()
% erp_opt: cell array of options which are passed to erpimage()
% scroll_event: 0 to hide events in scroll plot, 1 to show them
% classifier_name: string indicating which component classifier to
% use (must match a field name in EEG.etc.ic_classification)
% varargin: do not use this.
%
% Outputs:
% fh: handle for figure used
% EEG: EEG structure
%
% Notes: for the dipole plot, you need EEG.dipfit precalculated
%
% See also: spectopo(), erpimage(), scrollplot(), topoplot()
%
% TODO Notes: remove all axes(ax* called in erpimage (2793 2836 3515 [3475])
% also fix axcopy in the same way
% make erpimage, spectopo, and dipplot accept axhandle inputs.
%
% starting from pop_prop:
% updated by Ramon Martinez-Cancino and Luca Pion-Tonachini (2015)
% updated again by Luca Pion-Tonachini (2017)
% setup
if nargin < 1
help pop_prop_extended;
return;
end;
if nargin < 5
spec_opt = {};
end;
if nargin < 6
erp_opt = {};
end;
if nargin < 7
scroll_event = 1;
end;
if nargin < 8
classifier_name = '';
if ~typecomp && isfield(EEG.etc, 'ic_classification')
classifiers = fieldnames(EEG.etc.ic_classification);
if ~isempty(classifiers)
if any(strcmpi(classifiers, 'ICLabel'));
classifier_name = 'ICLabel';
else
classifier_name = classifiers{1};
end
end
end
end;
if nargin == 1
typecomp = 1; % defaults
chanorcomp = 1;
end;
if nargin == 10
% from callback
EEG = chanorcomp;
typecomp = winhandle;
chanorcomp = spec_opt;
winhandle = erp_opt;
spec_opt = scroll_event;
erp_opt = classifier_name;
scroll_event = varargin{1};
classifier_name = varargin{2};
varargin = {};
end
if typecomp == 0 && isempty(EEG.icaweights)
error('No ICA weights recorded for this dataset -- first run ICA on it');
end;
if nargin == 2
promptstr = { fastif(typecomp,'Channel index(ices) to plot:','Component index(ices) to plot:') ...
'Spectral options (see spectopo() help):','Erpimage options (see erpimage() help):' ...
[' Draw events over scrolling ' fastif(typecomp,'channel','component') ' activity']};
inistr = { '1' '''freqrange'', [2 80]' '', 1};
stylestr = {'edit', 'edit', 'edit', 'checkbox'};
% labels when available
if ~typecomp && isfield(EEG.etc, 'ic_classification')
classifiers = fieldnames(EEG.etc.ic_classification);
if ~isempty(classifiers)
iclabel_ind = find(strcmpi(classifiers, 'ICLabel'));
promptstr = [promptstr {classifiers}];
inistr = [inistr {fastif(isempty(iclabel_ind), 1, iclabel_ind)}];
stylestr = [stylestr {'popupmenu'}];
end
end
result = inputdlg3( 'prompt', promptstr,'style', stylestr, 'default', inistr, ...
'title', [fastif(typecomp,'Channel','Component') ' properties - pop_prop_extended()']);
if size( result, 1 ) == 0
return; end
chanorcomp = eval( [ '[' result{1} ']' ] );
spec_opt = eval( [ '{' result{2} '}' ] );
erp_opt = eval( [ '{' result{3} '}' ] );
scroll_event = result{4};
if ~typecomp && isfield(EEG.etc, 'ic_classification') && ~isempty(classifiers)
classifiers = fieldnames(EEG.etc.ic_classification);
classifier_name = classifiers{result{5}};
end
end;
% plotting several component properties
% -------------------------------------
if length(chanorcomp) > 1
for index = chanorcomp
pop_prop_extended(EEG, typecomp, index, nan, spec_opt, erp_opt, scroll_event, classifier_name, varargin{:}); % call recursively for each chanorcomp
end;
com = sprintf('pop_prop_extended( %s, %d, [%s], NaN, %s, %s, %d, ''%s''', inputname(1), ...
typecomp, int2str(chanorcomp), vararg2str({spec_opt}), vararg2str({erp_opt}), scroll_event, classifier_name);
if ~isempty(varargin)
com = [com sprintf(', %s', vararg2str(varargin))];
end
com = [com ');'];
return;
end;
if chanorcomp < 1 || chanorcomp > EEG.nbchan % should test for > number of components ??? -sm
error('Component index out of range');
end;
% initiialize figure
try
icadefs;
catch
BACKCOLOR = [0.9300 0.9600 1.0000];
end
if typecomp
basename = ['Channel ' EEG.chanlocs(chanorcomp).labels ];
else
basename = ['IC' int2str(chanorcomp) ];
end
fh = figure('name', [basename ' - pop_prop_extended()'],...
'color', BACKCOLOR,...
'numbertitle', 'off',...
'PaperPositionMode','auto',...
'Visible', 'off', ...
'ToolBar', 'none',...
'MenuBar','none');
pos = get(fh,'position');
set(fh,'Position', [pos(1)-1200+pos(3) pos(2)-700+pos(4) 1200 700]);
% initialize ica data
if ~typecomp
if ~isempty(EEG.icaact)
icaacttmp = EEG.icaact(chanorcomp, :, :);
else
icaacttmp = eeg_getdatact(EEG, 'component', chanorcomp);
end
end
% check for labels. if they exist, shorten scroll and plot them
if ~typecomp && isfield(EEG.etc, 'ic_classification') && ~isempty(classifier_name)
classifiers = fieldnames(EEG.etc.ic_classification);
classifier_name = classifiers{strcmpi(classifiers, classifier_name)};
if size(EEG.etc.ic_classification.(classifier_name).classifications, 1) ...
~= size(EEG.icawinv, 2)
warning(['The number of ICs do not match the number of IC classifications. This will result in incorrectly plotted labels. Please rerun ' classifier_name])
end
nclass = length(EEG.etc.ic_classification.(classifier_name).classes);
labelax = axes('Parent', fh, 'Position', [0.32 0.6389 0.035 0.28]);
yoffset = 0.5;
xoffset = 0.01;
barh(EEG.etc.ic_classification.(classifier_name).classifications(chanorcomp, end:-1:1), 'y')
axis(labelax, [-xoffset, 1, 1 - yoffset, nclass + yoffset])
set(labelax, 'YTickLabel', EEG.etc.ic_classification.(classifier_name).classes(end:-1:1), ...
'XGrid', 'on', 'XTick', 0:0.5:1)
xlabel 'Probability'
title(classifier_name)
for it = 1:nclass
text(0.5, it, sprintf('%.1f%%', EEG.etc.ic_classification.(classifier_name).classifications(chanorcomp, end - it + 1) * 100), ...
'fontsize', 11, 'HorizontalAlignment', 'center', ...
'Parent', labelax)
end
scroll_position = [0.4 0.7389 0.5929 0.18];
else
scroll_position = [0.3712 0.7389 0.5641 0.18];
end
% plot time series
% datax = axes('Parent', fh, 'position',,'units','normalized');
datax = axes('Parent', fh, 'Position',scroll_position,'units','normalized');
scrollax = uicontrol('Parent', fh, 'Style', 'Slider', ...
'Units', 'Normalized', 'Position', [scroll_position(1) 0.6389 scroll_position(3) 0.025]);
if ~scroll_event
EEG.event = []; end
if typecomp
scrollplot(EEG.times, single(EEG.data(chanorcomp, :, :)), 5, EEG.event, fh, datax, scrollax);
tstitle_h = title('Channel Time Series', 'fontsize', 14, 'FontWeight', 'Normal');
else
scrollplot(EEG.times, single(icaacttmp), 5, EEG.event, fh, datax, scrollax);
tstitle_h = title(['Scrolling IC' int2str(chanorcomp) ' Activity'], 'fontsize', 14, 'FontWeight', 'Normal');
end
set(tstitle_h,'FontSize',14, 'Position', get(tstitle_h, 'Position'), 'units', 'normalized');
set(datax,'FontSize',12);
xlabel(datax,'Time (ms)','fontsize', 14);
ylabel(datax,'uV');
% plot scalp map
axes('Parent', fh, 'position',[0.0143 0.6331 0.3121 0.3267],'units','normalized');
if typecomp
topoplot( chanorcomp, EEG.chanlocs, 'chaninfo', EEG.chaninfo, ...
'electrodes','off', 'style', 'blank', 'emarkersize1chan', 12); axis square;
title(['Channel ' EEG.chanlocs(chanorcomp).labels], 'fontsize', 14, 'FontWeight', 'Normal');
else
topoplot(EEG.icawinv(:,chanorcomp), EEG.chanlocs, ...
'chaninfo', EEG.chaninfo, 'electrodes','on'); axis square;
title(['IC' num2str(chanorcomp)], 'fontsize', 14, 'FontWeight', 'Normal');
end
% plot pvaf
if ~typecomp
maxsamp = 1e5;
n_samp = min(maxsamp, EEG.pnts*EEG.trials);
try
samp_ind = randperm(EEG.pnts*EEG.trials, n_samp);
catch
samp_ind = randperm(EEG.pnts*EEG.trials);
samp_ind = samp_ind(1:n_samp);
end
if ~isempty(EEG.icachansind)
icachansind = EEG.icachansind;
else
icachansind = 1:EEG.nbchan;
end
datavar = mean(var(EEG.data(icachansind, samp_ind), [], 2));
projvar = mean(var(EEG.data(icachansind, samp_ind) - ...
EEG.icawinv(:, chanorcomp) * icaacttmp(1, samp_ind), [], 2));
pvafval = 100 *(1 - projvar/ datavar);
pvaf = num2str(pvafval, '%3.1f');
text(0.5, -0.12, {['{% scalp data var. accounted for}: ' pvaf '%']}, ...
'fontsize', 13,'Units','Normalized', 'HorizontalAlignment', 'center');
end
% % plot labels
% if ~typecomp && isfield(EEG.etc, 'ic_classification')
% classifier = classifiers{1}; % TODO: gui option for this
% [slabels, sind] = sort(EEG.etc.ic_classification.(classifier).classifications(chanorcomp, :), 'ascend');
% text(0.5, -0.2, sprintf('%s: %s %.1f%%, %s %.1f%%', classifier, ...
% EEG.etc.ic_classification.(classifier).classes{sind(end)}, 100 * slabels(end), ...
% EEG.etc.ic_classification.(classifier).classes{sind(end - 1)}, 100 * slabels(end - 1)), ...
% 'fontsize', 13,'Units','Normalized', 'HorizontalAlignment', 'center');
% end
% plot erpimage
herp = axes('Parent', fh, 'position',[0.0643 0.1102 0.2421 0.3850],'units','normalized');
eeglab_options;
if EEG.trials > 1 % epoched data
axis(herp, 'off')
EEG.times = linspace(EEG.xmin, EEG.xmax, EEG.pnts);
if EEG.trials < 6
ei_smooth = 1;
else
ei_smooth = 1;
end
if typecomp == 1 % plot channel
offset = nan_mean(EEG.data(chanorcomp,:));
erp=nan_mean(squeeze(EEG.data(chanorcomp,:,:))')-offset;
erp_limits=get_era_limits(erp);
[t1,t2,t3,t4,axhndls] = erpimage( EEG.data(chanorcomp,:)-offset, ones(1,EEG.trials)*10000, EEG.times*1000, ...
'', ei_smooth, 1, 'caxis', 2/3, 'cbar','erp','erp_vltg_ticks',erp_limits, erp_opt{:});
else % plot component
offset = nan_mean(icaacttmp(:));
era = nan_mean(squeeze(icaacttmp)')-offset;
era_limits = get_era_limits(era);
[t1,t2,t3,t4,axhndls] = erpimage( icaacttmp-offset, ones(1,EEG.trials)*10000, EEG.times*1000, ...
'', ei_smooth, 1, 'caxis', 2/3, 'cbar','erp','erp_vltg_ticks',era_limits, erp_opt{:});
end;
title(['Epoched IC' int2str(chanorcomp) ' Activity'], 'fontsize', 14, 'FontWeight', 'Normal');
lab = text(1.27, .95,'RMS uV per scalp channel');
else % continuoous data
ERPIMAGELINES = 200; % show 200-line erpimage
while size(EEG.data,2) < ERPIMAGELINES*EEG.srate
ERPIMAGELINES = 0.9 * ERPIMAGELINES;
end
ERPIMAGELINES = round(ERPIMAGELINES);
if ERPIMAGELINES > 2 % give up if data too small
if ERPIMAGELINES < 6
ei_smooth = 1;
else
ei_smooth = 3;
end
erpimageframes = floor(size(EEG.data,2)/ERPIMAGELINES);
erpimageframestot = erpimageframes*ERPIMAGELINES;
eegtimes = linspace(0, erpimageframes-1, length(erpimageframes));
if typecomp == 1 % plot channel
offset = nan_mean(EEG.data(chanorcomp,:));
% Note: we don't need to worry about ERP limits, since ERPs
% aren't visualized for continuous data
[t1,t2,t3,t4,axhndls] = erpimage( reshape(EEG.data(chanorcomp,1:erpimageframestot),erpimageframes,ERPIMAGELINES)-offset, ones(1,ERPIMAGELINES)*10000, eegtimes , ...
'', ei_smooth, 1, 'caxis', 2/3, 'cbar', erp_opt{:});
else % plot component
offset = nan_mean(icaacttmp(:));
[t1,t2,t3,t4,axhndls] = erpimage(reshape(icaacttmp(:,1:erpimageframestot),erpimageframes,ERPIMAGELINES)-offset,ones(1,ERPIMAGELINES)*10000, eegtimes , ...
'', ei_smooth, 1, 'caxis', 2/3, 'cbar', erp_opt{:});
end
try
ylabel(axhndls{1}, 'Data');
catch
ylabel(axhndls(1), 'Data');
end
title('Continuous Data', 'fontsize', 14, 'FontWeight', 'Normal');
lab = text(1.27, .85,'RMS uV per scalp channel');
else
axis off;
text(0.1, 0.3, [ 'No erpimage plotted' 10 'for small continuous data']);
end
end
if exist('axhndls', 'var')
try
% 2014+
axhndls{1}.FontSize = 12;
axhndls{1}.YLabel.FontSize = 14;
set(axhndls{2},'position', get(axhndls{2},'position') - [0.01 0 0.02 0]);
try
axhndls{3}.FontSize = 12;
axhndls{3}.XLabel.FontSize = 14; %#ok<NASGU>
catch
axhndls{1}.XLabel.FontSize = 14; %#ok<NASGU>
end
catch
% 2013-
set(axhndls(1), 'FontSize', 12)
set(get(axhndls(1), 'Ylabel'), 'FontSize', 14)
set(axhndls(2),'position', get(axhndls(2),'position') - [0.01 0 0.02 0], ...
'Fontsize', 12)
if ~isnan(axhndls(3))
set(axhndls(3), 'FontSize', 12)
set(get(axhndls(3), 'Xlabel'), 'FontSize', 14)
else
set(get(axhndls(1), 'Xlabel'), 'FontSize', 14)
end
end
set(lab, 'rotation', -90, 'FontSize', 12)
end
% plot spectrum
try
hfreq = axes('Parent', fh, 'position', [0.5765 0.1109 0.3587 0.4336], 'units', 'normalized');
if typecomp
spectopo( EEG.data(chanorcomp,:), EEG.pnts, EEG.srate, spec_opt{:} );
title(hfreq,'Channel Activity Power Spectrum','units','normalized', 'fontsize', 14, 'FontWeight', 'Normal');
else
spectopo( icaacttmp(1, :), EEG.pnts, EEG.srate, 'mapnorm', EEG.icawinv(:,chanorcomp), spec_opt{:} );
title(hfreq,['IC' int2str(chanorcomp) ' Activity Power Spectrum'],'units','normalized', 'fontsize', 14, 'FontWeight', 'Normal');
end
set(get(hfreq, 'ylabel'), 'string', 'Power 10*log_{10}(uV^2/Hz)', 'fontsize', 14);
set(get(hfreq, 'xlabel'), 'string', 'Frequency (Hz)', 'fontsize', 14, 'fontweight', 'normal');
set(hfreq, 'fontsize', 14, 'fontweight', 'normal');
xlims = xlim;
hfreqline = findobj(hfreq, 'type', 'line');
xdata = get(hfreqline, 'xdata');
ydata = get(hfreqline, 'ydata');
ind = xdata >= xlims(1) & xdata <= xlims(2);
axis on;
axis([xlims min(ydata(ind)) max(ydata(ind))])
box on;
grid on;
catch e
cla(hfreq);
disp(e)
text(0.1, 0.3, [ 'Error: no spectrum plotted' 10 ' make sure you have the ' 10 'signal processing toolbox']);
end
% Defining path for system
eeglabpath = which('eeglab.m');
pathtmp = fileparts(eeglabpath);
dipfits = dir(fullfile(pathtmp, 'plugins', 'dipfit*'));
[~, dipfit_order] = sort(cellfun(@(c) str2double(c(7:end)), {dipfits.name}), 'descend');
for it_dipfit_version = dipfit_order
dipfit_folder = fullfile(pathtmp, 'plugins', dipfits(it_dipfit_version).name);
meshdatapath = fullfile(dipfit_folder, 'standard_BEM', 'standard_vol.mat');
mripath = fullfile(dipfit_folder, 'standard_BEM', 'standard_mri.mat');
if ~typecomp && exist(meshdatapath,'file') == 2 && exist(mripath,'file') == 2
% dipplot
if isfield(EEG, 'dipfit') && ~isempty(EEG.dipfit)
try
rv = num2str(EEG.dipfit.model(chanorcomp).rv*100, '%.1f');
catch
rv = 'N/A';
end
dip_background = axes('Parent', fh, 'position', [0.41 0.1 0.1 0.1557*3+0.0109], ...
'units', 'normalized', 'XLim', [0 1], 'Ylim', [0 1]);
patch([0 0 1 1], [0 1 1 0], 'k', 'parent', dip_background)
axis(dip_background, 'off')
colors = {'g', 'm', 'y'};
% axial
ax(1) = axes('Parent', fh, 'position', [0.41 0.1109 0.1 0.1557], 'units', 'normalized');
axis equal off
dipplot(EEG.dipfit.model(chanorcomp), ...
'meshdata', meshdatapath, ...
'mri', mripath, ...
'normlen', 'on', 'coordformat', 'MNI', 'axistight', 'on', 'gui', 'off', 'view', [0 0 1], 'pointout', 'on');
temp = axes('Parent', fh, 'position', [0.41 0.1109 0.1 0.1557], 'units', 'normalized');
copyobj(allchild(ax(1)),temp);
delete(ax(1))
ax(1) = temp;
axis equal off
temp = get(ax(1),'children');
ind = find(strcmp('line', get(temp, 'type')));
for it = 1:length(ind)
if mod(it, 2)
set(temp(ind(it)), 'markersize', 15, 'color', colors{ceil(it / 2)})
else
set(temp(ind(it)), 'linewidth', 2, 'color', colors{ceil(it / 2)})
end
end
% coronal
ax(2) = axes('Parent', fh, 'position', [0.41 0.2666 0.1 0.1557], 'units', 'normalized');
axis equal off
copyobj(allchild(ax(1)),ax(2));
view([0 -1 0])
axis equal off
temp = get(ax(2),'children');
ind = find(strcmp('line', get(temp, 'type')));
for it = 1:length(ind)
if mod(it, 2)
set(temp(ind(it)), 'markersize', 15, 'color', colors{ceil(it / 2)})
else
set(temp(ind(it)), 'linewidth', 2, 'color', colors{ceil(it / 2)})
end
end
% sagital
ax(3) = axes('Parent', fh, 'position', [0.41 0.4223 0.1 0.1557], 'units', 'normalized');
axis equal off
copyobj(allchild(ax(1)),ax(3));
view([1 0 0])
axis equal off
temp = get(ax(3),'children');
ind = find(strcmp('line', get(temp, 'type')));
for it = 1:length(ind)
if mod(it, 2)
set(temp(ind(it)), 'markersize', 15, 'color', colors{ceil(it / 2)})
else
set(temp(ind(it)), 'linewidth', 2, 'color', colors{ceil(it / 2)})
end
end
% dipole text
dip_title = title(dip_background, 'Dipole Position', 'FontWeight', 'Normal');
set(dip_title,'FontSize',14);
set(fh, 'CurrentAxes', ax(1))
if size(EEG.dipfit.model(chanorcomp).momxyz, 1) == 2
dmr = norm(EEG.dipfit.model(chanorcomp).momxyz(1,:)) ...
/ norm(EEG.dipfit.model(chanorcomp).momxyz(2,:));
if dmr<1
dmr = 1/dmr; end
text(-50,-173,{['RV: ' rv '%']; ['DMR:' num2str(dmr,'%.1f')]})
else
text(-50,-163,['RV: ' rv '%'])
end
% exit loop over dipfit versions
break
end
end
end
% final figure adjustments
rotate3d(fh, 'off');
set(fh, 'color', BACKCOLOR, 'visible', 'on')
% display buttons
% ---------------
if ~exist('winhandle', 'var')
winhandle = nan; end
if isobject(winhandle) || ~isnan(winhandle)
COLREJ = '[1 0.6 0.6]';
COLACC = '[0.75 1 0.75]';
bottom = 0.005;
height = 0.04;
% CANCEL button
% -------------
h = uicontrol(gcf, 'Style', 'pushbutton', 'backgroundcolor', GUIBUTTONCOLOR, 'string', 'Cancel', 'Units','Normalized','Position',[0.2 bottom 0.1 height], 'callback', 'close(gcf);');
% VALUE button
% -------------
hval = uicontrol(gcf, 'Style', 'pushbutton', 'backgroundcolor', GUIBUTTONCOLOR, 'string', 'Values', 'Units','Normalized', 'Position', [0.325 bottom 0.1 height]);
% REJECT button
% -------------
if ~isempty(EEG.reject.gcompreject)
status = EEG.reject.gcompreject(chanorcomp);
else
status = 0;
end;
hr = uicontrol(gcf, 'Style', 'pushbutton', 'backgroundcolor', eval(fastif(status,COLREJ,COLACC)), ...
'string', fastif(status, 'REJECT', 'ACCEPT'), 'Units','Normalized', 'Position', [0.45 bottom 0.1 height], 'userdata', status, 'tag', 'rejstatus');
command = [ 'set(gcbo, ''userdata'', ~get(gcbo, ''userdata''));' ...
'if get(gcbo, ''userdata''),' ...
' set( gcbo, ''backgroundcolor'',' COLREJ ', ''string'', ''REJECT'');' ...
'else ' ...
' set( gcbo, ''backgroundcolor'',' COLACC ', ''string'', ''ACCEPT'');' ...
'end;' ];
set( hr, 'callback', command);
% HELP button
% -------------
h = uicontrol(gcf, 'Style', 'pushbutton', 'backgroundcolor', GUIBUTTONCOLOR, 'string', 'HELP', 'Units','Normalized', 'Position', [0.575 bottom 0.1 height], 'callback', 'pophelp(''pop_prop'');');
% OK button
% ---------
command = [ 'global EEG;' ...
'tmpstatus = get( findobj(''parent'', gcbf, ''tag'', ''rejstatus''), ''userdata'');' ...
'EEG.reject.gcompreject(' num2str(chanorcomp) ') = tmpstatus;' ];
if winhandle ~= 0
command = [ command ...
sprintf('if tmpstatus set(%3.15f, ''backgroundcolor'', %s); else set(%3.15f, ''backgroundcolor'', %s); end;', ...
winhandle, COLREJ, winhandle, COLACC)];
end;
command = [ command 'close(gcf); clear tmpstatus' ];
h = uicontrol(gcf, 'Style', 'pushbutton', 'string', 'OK', 'backgroundcolor', GUIBUTTONCOLOR, 'Units','Normalized', 'Position',[0.7 bottom 0.1 height], 'callback', command);
% draw the figure for statistical values
% --------------------------------------
index = num2str( chanorcomp );
command = [ ...
'figure(''MenuBar'', ''none'', ''name'', ''Statistics of the component'', ''numbertitle'', ''off'');' ...
'' ...
'pos = get(gcf,''Position'');' ...
'set(gcf,''Position'', [pos(1) pos(2) 340 340]);' ...
'pos = get(gca,''position'');' ...
'q = [pos(1) pos(2) 0 0];' ...
's = [pos(3) pos(4) pos(3) pos(4)]./100;' ...
'axis off;' ...
'' ...
'txt1 = sprintf(''(\n' ...
'Entropy of component activity\t\t%2.2f\n' ...
'> Rejection threshold \t\t%2.2f\n\n' ...
' AND \t\t\t----\n\n' ...
'Kurtosis of component activity\t\t%2.2f\n' ...
'> Rejection threshold \t\t%2.2f\n\n' ...
') OR \t\t\t----\n\n' ...
'Kurtosis distibution \t\t\t%2.2f\n' ...
'> Rejection threhold\t\t\t%2.2f\n\n' ...
'\n' ...
'Current thesholds sujest to %s the component\n\n' ...
'(after manually accepting/rejecting the component, you may recalibrate thresholds for future automatic rejection on other datasets)'',' ...
'EEG.stats.compenta(' index '), EEG.reject.threshentropy, EEG.stats.compkurta(' index '), ' ...
'EEG.reject.threshkurtact, EEG.stats.compkurtdist(' index '), EEG.reject.threshkurtdist, fastif(EEG.reject.gcompreject(' index '), ''REJECT'', ''ACCEPT''));' ...
'' ...
'uicontrol(gcf, ''Units'',''Normalized'', ''Position'',[-11 4 117 100].*s+q, ''Style'', ''frame'' );' ...
'uicontrol(gcf, ''Units'',''Normalized'', ''Position'',[-5 5 100 95].*s+q, ''String'', txt1, ''Style'',''text'', ''HorizontalAlignment'', ''left'' );' ...
'h = uicontrol(gcf, ''Style'', ''pushbutton'', ''string'', ''Close'', ''Units'',''Normalized'', ''Position'', [35 -10 25 10].*s+q, ''callback'', ''close(gcf);'');' ...
'clear txt1 q s h pos;' ];
set( hval, 'callback', command);
if isempty( EEG.stats.compenta )
set(hval, 'enable', 'off');
end;
com = sprintf('pop_prop_extended( %s, %d, [%s], 0, %s, %s, %d, ''%s''', inputname(1), ...
typecomp, int2str(chanorcomp), vararg2str({spec_opt}), vararg2str({erp_opt}), scroll_event, classifier_name);
if ~isempty(varargin)
com = [com sprintf(', %s', vararg2str(varargin))];
end
com = [com ');'];
else
com = sprintf('pop_prop_extended( %s, %d, [%s], NaN, %s, %s, %d, ''%s''', inputname(1), ...
typecomp, int2str(chanorcomp), vararg2str({spec_opt}), vararg2str({erp_opt}), scroll_event, classifier_name);
if ~isempty(varargin)
com = [com sprintf(', %s', vararg2str(varargin))];
end
com = [com ');'];
end;
drawnow;
function era_limits=get_era_limits(era)
%function era_limits=get_era_limits(era)
%
% Returns the minimum and maximum value of an event-related
% activation/potential waveform (after rounding according to the order of
% magnitude of the ERA/ERP)
%
% Inputs:
% era - [vector] Event related activation or potential
%
% Output:
% era_limits - [min max] minimum and maximum value of an event-related
% activation/potential waveform (after rounding according to the order of
% magnitude of the ERA/ERP)
mn=min(era);
mx=max(era);
mn=orderofmag(mn)*round(mn/orderofmag(mn));
mx=orderofmag(mx)*round(mx/orderofmag(mx));
era_limits=[mn mx];
function ord=orderofmag(val)
%function ord=orderofmag(val)
%
% Returns the order of magnitude of the value of 'val' in multiples of 10
% (e.g., 10^-1, 10^0, 10^1, 10^2, etc ...)
% used for computing erpimage trial axis tick labels as an alternative for
% plotting sorting variable
val=abs(val);
if val>=1
ord=1;
val=floor(val/10);
while val>=1,
ord=ord*10;
val=floor(val/10);
end
return;
else
ord=1/10;
val=val*10;
while val<1,
ord=ord/10;
val=val*10;
end
return;
end
% inputdlg3() - A comprehensive gui automatic builder. This function takes
% text, type of GUI and default value and builds
% automatically a simple graphic interface.
%
% Usage:
% >> [outparam outstruct] = inputdlg3( 'key1', 'val1', 'key2', 'val2', ... );
%
% Inputs:
% 'prompt' - cell array of text
% 'style' - cell array of style for each GUI. Default is edit.
% 'default' - cell array of default values. Default is empty.
% 'tags' - cell array of tag text. Default is no tags.
% 'tooltip' - cell array of tooltip texts. Default is no tooltip.
%
% Output:
% outparam - list of outputs. The function scans all lines and
% add up an output for each interactive uicontrol, i.e
% edit box, radio button, checkbox and listbox.
% userdat - 'userdata' value of the figure.
% strhalt - the function returns when the 'userdata' field of the
% button with the tag 'ok' is modified. This returns the
% new value of this field.
% outstruct - returns outputs as a structure (only tagged ui controls
% are considered). The field name of the structure is
% the tag of the ui and contain the ui value or string.
%
% Note: the function also adds three buttons at the bottom of each
% interactive windows: 'CANCEL', 'HELP' (if callback command
% is provided) and 'OK'.
%
% Example:
% res = inputdlg3('prompt', { 'What is your name' 'What is your age' } );
% res = inputdlg3('prompt', { 'Chose a value below' 'Value1|value2|value3' ...
% 'uncheck the box' }, ...
% 'style', { 'text' 'popupmenu' 'checkbox' }, ...
% 'default',{ 0 2 1 });
%
% Author: Arnaud Delorme, Tim Mullen, Christian Kothe, SCCN, INC, UCSD
%
% See also: supergui(), eeglab()
% Copyright (C) Arnaud Delorme, SCCN, INC, UCSD, 2010, arno@ucsd.edu
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
function [result, userdat, strhalt, resstruct] = inputdlg3( varargin);
if nargin < 2
help inputdlg3;
return;
end;
% check input values
% ------------------
[opt addopts] = finputcheck(varargin, { 'prompt' 'cell' [] {};
'style' 'cell' [] {};
'default' 'cell' [] {};
'tag' 'cell' [] {};
'tooltip','cell' [] {}}, 'inputdlg3', 'ignore');
if isempty(opt.prompt), error('The ''prompt'' parameter must be non empty'); end;
if isempty(opt.style), opt.style = cell(1,length(opt.prompt)); opt.style(:) = {'edit'}; end;
if isempty(opt.default), opt.default = cell(1,length(opt.prompt)); opt.default(:) = {0}; end;
if isempty(opt.tag), opt.tag = cell(1,length(opt.prompt)); opt.tag(:) = {''}; end;
% creating GUI list input
% -----------------------
uilist = {};
uigeometry = {};
outputind = ones(1,length(opt.prompt));
for index = 1:length(opt.prompt)
if strcmpi(opt.style{index}, 'edit')
uilist{end+1} = { 'style' 'text' 'string' opt.prompt{index} };
uilist{end+1} = { 'style' 'edit' 'string' opt.default{index} 'tag' opt.tag{index} 'tooltip' opt.tag{index}};
uigeometry{index} = [2 1];
else
uilist{end+1} = { 'style' opt.style{index} 'string' opt.prompt{index} 'value' opt.default{index} 'tag' opt.tag{index} 'tooltip' opt.tag{index}};
uigeometry{index} = [1];
end;
if strcmpi(opt.style{index}, 'text')
outputind(index) = 0;
end;
end;
[tmpresult, userdat, strhalt, resstruct] = inputgui('uilist', uilist,'geometry', uigeometry, addopts{:});
try
result = cell(1,length(opt.prompt));
result(find(outputind)) = tmpresult;
catch
result = [];
end