forked from deus-libri/preflate
-
Notifications
You must be signed in to change notification settings - Fork 0
/
preflate_checker.cpp
288 lines (265 loc) · 10.8 KB
/
preflate_checker.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
/* Copyright 2018 Dirk Steinke
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <stdio.h>
#include <string.h>
#include "preflate_block_decoder.h"
#include "preflate_block_reencoder.h"
#include "preflate_checker.h"
#include "preflate_parameter_estimator.h"
#include "preflate_statistical_model.h"
#include "preflate_token_predictor.h"
#include "preflate_tree_predictor.h"
#include "support/bitstream.h"
#include "support/memstream.h"
#include "support/outputcachestream.h"
#include <algorithm>
#include <chrono>
bool preflate_checker(const std::vector<unsigned char>& deflate_raw) {
printf("Checking raw deflate file of size %d\n", (int)deflate_raw.size());
MemStream decIn(deflate_raw);
MemStream decUnc;
BitInputStream decInBits(decIn);
OutputCacheStream decOutCache(decUnc);
std::vector<PreflateTokenBlock> blocks;
auto ts_start = std::chrono::steady_clock::now();
PreflateBlockDecoder bdec(decInBits, decOutCache);
if (bdec.status() != PreflateBlockDecoder::OK) {
return false;
}
bool last;
unsigned i = 0;
do {
PreflateTokenBlock newBlock;
bool ok = bdec.readBlock(newBlock, last);
if (!ok) {
printf("inflating error (preflate)\n");
return false;
}
blocks.push_back(newBlock);
++i;
} while (!last);
uint8_t remaining_bit_count = (8 - decInBits.bitPos()) & 7;
uint8_t remaining_bits = decInBits.get(remaining_bit_count);
decOutCache.flush();
std::vector<unsigned char> unpacked_output = decUnc.extractData();
auto ts_end = std::chrono::steady_clock::now();
printf("Unpacked data has size %d\n", (int)unpacked_output.size());
printf("Unpacking took %g seconds\n", std::chrono::duration<double>(ts_end - ts_start).count());
// Encode
PreflateParameters paramsE = estimatePreflateParameters(unpacked_output, 0, blocks);
printf("prediction parameters: w %d, c %d, m %d, zlib %d, farL3M %d, very far M %d, M2S %d, log2CD %d\n",
paramsE.windowBits, paramsE.compLevel, paramsE.memLevel,
paramsE.zlibCompatible, paramsE.farLen3MatchesDetected,
paramsE.veryFarMatchesDetected, paramsE.matchesToStartDetected,
paramsE.log2OfMaxChainDepthM1);
ts_start = std::chrono::steady_clock::now();
PreflateStatisticsCounter counterE;
memset(&counterE, 0, sizeof(counterE));
PreflateTokenPredictor tokenPredictorE(paramsE, unpacked_output, 0);
PreflateTreePredictor treePredictorE(unpacked_output, 0);
for (unsigned i = 0, n = blocks.size(); i < n; ++i) {
tokenPredictorE.analyzeBlock(i, blocks[i]);
if (tokenPredictorE.predictionFailure) {
printf("block %d: compress failed token prediction\n", i);
return false;
}
treePredictorE.analyzeBlock(i, blocks[i]);
if (treePredictorE.predictionFailure) {
printf("block %d: compress failed tree prediction\n", i);
return false;
}
tokenPredictorE.updateCounters(&counterE, i);
treePredictorE.updateCounters(&counterE, i);
}
counterE.block.incNonZeroPadding(remaining_bits != 0);
ts_end = std::chrono::steady_clock::now();
printf("Prediction took %g seconds\n", std::chrono::duration<double>(ts_end - ts_start).count());
counterE.print();
ts_start = std::chrono::steady_clock::now();
PreflateMetaEncoder codecE;
if (codecE.error()) {
return false;
}
PreflatePredictionEncoder pcodecE;
unsigned modelId = codecE.addModel(counterE, paramsE);
if (!codecE.beginMetaBlockWithModel(pcodecE, modelId)) {
return false;
}
for (unsigned i = 0, n = blocks.size(); i < n; ++i) {
tokenPredictorE.encodeBlock(&pcodecE, i);
if (tokenPredictorE.predictionFailure) {
printf("block %d: compress failed token encoding\n", i);
return false;
}
treePredictorE.encodeBlock(&pcodecE, i);
if (treePredictorE.predictionFailure) {
printf("block %d: compress failed tree encoding\n", i);
return false;
}
tokenPredictorE.encodeEOF(&pcodecE, i, i + 1 == blocks.size());
}
pcodecE.encodeNonZeroPadding(remaining_bits != 0);
if (remaining_bits != 0) {
unsigned bitsToSave = bitLength(remaining_bits);
pcodecE.encodeValue(bitsToSave, 3);
if (bitsToSave > 1) {
pcodecE.encodeValue(remaining_bits & ((1 << (bitsToSave - 1)) - 1), bitsToSave - 1);
}
}
if (!codecE.endMetaBlock(pcodecE, unpacked_output.size())) {
return false;
}
std::vector<unsigned char> preflate_diff = codecE.finish();
ts_end = std::chrono::steady_clock::now();
printf("Prediction diff has size %d\n", (int)preflate_diff.size());
printf("Encoding diff took %g seconds\n", std::chrono::duration<double>(ts_end - ts_start).count());
// Decode
ts_start = std::chrono::steady_clock::now();
PreflateMetaDecoder codecD(preflate_diff, unpacked_output.size());
PreflatePredictionDecoder pcodecD;
PreflateParameters paramsD;
if (codecD.error() || codecD.metaBlockCount() != 1) {
return false;
}
if (!codecD.beginMetaBlock(pcodecD, paramsD, 0)) {
return false;
}
PreflateTokenPredictor tokenPredictorD(paramsD, unpacked_output, 0);
PreflateTreePredictor treePredictorD(unpacked_output, 0);
MemStream mem;
BitOutputStream bos(mem);
std::vector<PreflateTokenBlock> dblocks;
unsigned blockno = 0;
bool eof = true;
do {
PreflateTokenBlock block = tokenPredictorD.decodeBlock(&pcodecD);
if (tokenPredictorD.predictionFailure) {
printf("block %d: token uncompress failed\n", blockno);
return false;
}
if (!treePredictorD.decodeBlock(block, &pcodecD)) {
printf("block %d: tree uncompress failed\n", blockno);
return false;
}
if (treePredictorD.predictionFailure) {
printf("block %d: tree uncompress failed\n", blockno);
return false;
}
eof = tokenPredictorD.decodeEOF(&pcodecD);
dblocks.push_back(block);
++blockno;
} while (!eof);
ts_end = std::chrono::steady_clock::now();
printf("Decoding diff and reprediction took %g seconds\n", std::chrono::duration<double>(ts_end - ts_start).count());
if (paramsD.windowBits != paramsE.windowBits) {
printf("parameter decoding failed: windowBits mismatch\n");
return false;
}
if (paramsD.memLevel != paramsE.memLevel) {
printf("parameter decoding failed: memLevel mismatch\n");
return false;
}
if (paramsD.compLevel != paramsE.compLevel) {
printf("parameter decoding failed: compLevel mismatch\n");
return false;
}
if (paramsD.zlibCompatible != paramsE.zlibCompatible) {
printf("parameter decoding failed: zlib compatible flag mismatch\n");
return false;
}
if (!paramsD.zlibCompatible && (0
// || paramsD.farLen3MatchesDetected != paramsE.farLen3MatchesDetected
|| paramsD.veryFarMatchesDetected != paramsE.veryFarMatchesDetected
|| paramsD.matchesToStartDetected != paramsE.matchesToStartDetected
|| paramsD.log2OfMaxChainDepthM1 != paramsE.log2OfMaxChainDepthM1)) {
printf("parameter decoding failed: non-zlib flag mismatch\n");
return false;
}
if (!isEqual(pcodecD, pcodecE)) {
printf("decoded model differs from original\n");
return false;
}
for (size_t blockno = 0, n = std::min(blocks.size(), dblocks.size()); blockno < n; ++blockno) {
if (dblocks[blockno].type != blocks[blockno].type) {
printf("block %zu: type differs: org %d, new %d\n", blockno, blocks[blockno].type, dblocks[blockno].type);
return false;
}
for (unsigned i = 0, n = std::min(dblocks[blockno].tokens.size(), blocks[blockno].tokens.size()); i < n; ++i) {
PreflateToken orgToken = blocks[blockno].tokens[i];
PreflateToken newToken = dblocks[blockno].tokens[i];
if (newToken.len != orgToken.len || newToken.dist != orgToken.dist) {
printf("block %zu: generated token %d differs: org(%d,%d), new(%d,%d)\n",
blockno, i, orgToken.len, orgToken.dist, newToken.len, newToken.dist);
return false;
}
}
if (dblocks[blockno].tokens.size() != blocks[blockno].tokens.size()) {
printf("block %zu: differing token count: org %d, new %d\n",
blockno, (int)blocks[blockno].tokens.size(), (int)dblocks[blockno].tokens.size());
return false;
}
if (dblocks[blockno].type == PreflateTokenBlock::DYNAMIC_HUFF) {
if (dblocks[blockno].nlen != blocks[blockno].nlen) {
printf("block %zu: literal/len count differs: org %d, new %d\n",
blockno, blocks[blockno].nlen, dblocks[blockno].nlen);
return false;
}
if (dblocks[blockno].ndist != blocks[blockno].ndist) {
printf("block %zu: dist count differs: org %d, new %d\n",
blockno, blocks[blockno].ndist, dblocks[blockno].ndist);
return false;
}
if (dblocks[blockno].ncode != blocks[blockno].ncode) {
printf("block %zu: tree code count differs: org %d, new %d\n",
blockno, blocks[blockno].ncode, dblocks[blockno].ncode);
return false;
}
if (dblocks[blockno].treecodes != blocks[blockno].treecodes) {
printf("block %zu: generated tree codes differs\n", blockno);
return false;
}
}
}
ts_start = std::chrono::steady_clock::now();
PreflateBlockReencoder deflater(bos, unpacked_output, 0);
for (size_t i = 0; i < dblocks.size(); ++i) {
deflater.writeBlock(dblocks[i], i + 1 == dblocks.size());
}
bool non_zero_bits = pcodecD.decodeNonZeroPadding();
if (non_zero_bits) {
unsigned bitsToLoad = pcodecD.decodeValue(3);
unsigned padding = 0;
if (bitsToLoad > 0) {
padding = (1 << (bitsToLoad - 1)) + pcodecD.decodeValue(bitsToLoad - 1);
}
bos.put(padding, bitsToLoad);
}
if (!codecD.endMetaBlock(pcodecD)) {
return false;
}
deflater.flush();
std::vector<unsigned char> deflate_raw_out = mem.extractData();
ts_end = std::chrono::steady_clock::now();
printf("Reencoding deflate stream took %g seconds\n", std::chrono::duration<double>(ts_end - ts_start).count());
for (unsigned i = 0, n = std::min(deflate_raw.size(), deflate_raw_out.size()); i < n; ++i) {
if (deflate_raw[i] != deflate_raw_out[i]) {
printf("created deflate stream differs at offset %d\n", i);
return false;
}
}
if (deflate_raw.size() != deflate_raw_out.size()) {
printf("created deflate streams differs in size: org %d, new %d\n",
(int)deflate_raw.size(), (int)deflate_raw_out.size());
return false;
}
printf("Success\n");
return true;
}