forked from fieldtrip/fieldtrip
-
Notifications
You must be signed in to change notification settings - Fork 4
/
ft_dipolesimulation.m
286 lines (256 loc) · 11.1 KB
/
ft_dipolesimulation.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
function [data] = ft_dipolesimulation(cfg)
% FT_DIPOLESIMULATION simulates channel-level time-series data that consists of the
% the spatial distribution of the the field or potential of one or multiple dipoles.
%
% Use as
% data = ft_dipolesimulation(cfg)
% which will return a raw data structure that resembles the output of
% FT_PREPROCESSING.
%
% The dipoles position and orientation have to be specified with
% cfg.sourcemodel.pos = [Rx Ry Rz] (size Nx3)
% cfg.sourcemodel.mom = [Qx Qy Qz] (size 3xN)
% cfg.sourcemodel.unit = string, can be 'mm', 'cm', 'm' (default is automatic)
%
% The timecourse of the dipole activity is given as a cell-array with one
% dipole signal per trial
% cfg.sourcemodel.signal = cell-array with one dipole signal per trial
% or by specifying the parameters of a sine-wave signal
% cfg.sourcemodel.frequency = in Hz
% cfg.sourcemodel.phase = in radians
% cfg.sourcemodel.amplitude = per dipole
%
% The number of trials and the time axes of the trials can be specified by
% cfg.fsample = simulated sample frequency (default = 1000)
% cfg.trllen = length of simulated trials in seconds (default = 1)
% cfg.numtrl = number of simulated trials (default = 10)
% cfg.baseline = number (default = 0.3)
% or by
% cfg.time = cell-array with one time axis per trial, for example obtained from an existing dataset
%
% Random white noise can be added to the data in each trial, either by
% specifying an absolute or a relative noise level
% cfg.relnoise = add noise with level relative to data signal
% cfg.absnoise = add noise with absolute level
% cfg.randomseed = 'yes' or a number or vector with the seed value (default = 'yes')
%
% Optional input arguments are
% cfg.channel = Nx1 cell-array with selection of channels (default = 'all'),
% see FT_CHANNELSELECTION for details
% cfg.dipoleunit = units for dipole amplitude (default nA*m)
% cfg.chanunit = Nx1 cell-array with units for the channel data
%
% Optionally, you can modify the leadfields by reducing the rank, i.e. remove the weakest orientation
% cfg.reducerank = 'no', or number (default = 3 for EEG, 2 for MEG)
% cfg.backproject = 'yes' or 'no', determines when reducerank is applied whether the
% lower rank leadfield is projected back onto the original linear
% subspace, or not (default = 'yes')
%
% The volume conduction model of the head should be specified as
% cfg.headmodel = structure with volume conduction model, see FT_PREPARE_HEADMODEL
%
% The EEG or MEG sensor positions should be specified as
% cfg.elec = structure with electrode positions or filename, see FT_READ_SENS
% cfg.grad = structure with gradiometer definition or filename, see FT_READ_SENS
%
% See also FT_SOURCEANALYSIS, FT_DIPOLEFITTING, FT_TIMELOCKSIMULATION,
% FT_FREQSIMULATION, FT_CONNECTIVITYSIMULATION
% Undocumented local options
% cfg.feedback
% cfg.previous
% cfg.version
% Copyright (C) 2004, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble debug
ft_preamble provenance
ft_preamble randomseed
% the ft_abort variable is set to true or false in ft_preamble_init
if ft_abort
return
end
% check if the input cfg is valid for this function
cfg = ft_checkconfig(cfg, 'forbidden', {'channels'}); % prevent accidental typos, see issue 1729
cfg = ft_checkconfig(cfg, 'renamed', {'elecfile', 'elec'});
cfg = ft_checkconfig(cfg, 'renamed', {'gradfile', 'grad'});
cfg = ft_checkconfig(cfg, 'renamed', {'optofile', 'opto'});
cfg = ft_checkconfig(cfg, 'renamed', {'hdmfile', 'headmodel'});
cfg = ft_checkconfig(cfg, 'renamed', {'vol', 'headmodel'});
cfg = ft_checkconfig(cfg, 'renamed', {'dip', 'sourcemodel'});
% for consistency with FT_TIMELOCKSIMULUATION and FT_FREQSIMULATION
cfg = ft_checkconfig(cfg, 'createsubcfg', 'sourcemodel');
cfg = ft_checkconfig(cfg, 'renamed', {'ntrials', 'numtrl'});
cfg = ft_checkconfig(cfg, 'renamed', {'triallength', 'trllen'});
% set the defaults
cfg.sourcemodel = ft_getopt(cfg, 'sourcemodel', []);
cfg.sourcemodel.pos = ft_getopt(cfg.sourcemodel, 'pos', [-5 0 15]);
cfg.sourcemodel.mom = ft_getopt(cfg.sourcemodel, 'mom', [1 0 0]');
cfg.sourcemodel.time = ft_getopt(cfg.sourcemodel, 'time', {});
cfg.sourcemodel.signal = ft_getopt(cfg.sourcemodel, 'signal', {});
cfg.fsample = ft_getopt(cfg, 'fsample', 250);
cfg.relnoise = ft_getopt(cfg, 'relnoise', 0);
cfg.absnoise = ft_getopt(cfg, 'absnoise', 0);
cfg.feedback = ft_getopt(cfg, 'feedback', 'text');
cfg.channel = ft_getopt(cfg, 'channel', 'all');
cfg.dipoleunit = ft_getopt(cfg, 'dipoleunit', 'nA*m');
cfg.chanunit = ft_getopt(cfg, 'chanunit', {});
% collect and preprocess the electrodes/gradiometer and head model
% this will also update cfg.channel to match the electrodes/gradiometers
[headmodel, sens, cfg] = prepare_headmodel(cfg, []);
% construct the low-level options for the leadfield computation as key-value pairs, these are passed to FT_COMPUTE_LEADFIELD
leadfieldopt = {};
leadfieldopt = ft_setopt(leadfieldopt, 'reducerank', ft_getopt(cfg, 'reducerank'));
leadfieldopt = ft_setopt(leadfieldopt, 'backproject', ft_getopt(cfg, 'backproject'));
leadfieldopt = ft_setopt(leadfieldopt, 'normalize', ft_getopt(cfg, 'normalize'));
leadfieldopt = ft_setopt(leadfieldopt, 'normalizeparam', ft_getopt(cfg, 'normalizeparam'));
leadfieldopt = ft_setopt(leadfieldopt, 'weight', ft_getopt(cfg, 'weight'));
cfg.sourcemodel = fixdipole(cfg.sourcemodel);
Ndipoles = size(cfg.sourcemodel.pos,1);
% in case no time or signal was given, set some additional defaults
if ~isempty(cfg.sourcemodel.time) && ~isempty(cfg.sourcemodel.signal)
assert(length(cfg.sourcemodel.signal)==length(cfg.sourcemodel.time)); % these must match
cfg.numtrl = length(cfg.sourcemodel.time);
cfg.fsample = 1/mean(diff(cfg.sourcemodel.time{1})); % determine from time-axis
cfg.trllen = length(cfg.sourcemodel.time{1})/cfg.fsample;
cfg.baseline = -cfg.sourcemodel.time{1}(1);
elseif ~isempty(cfg.sourcemodel.time)
cfg.numtrl = length(cfg.sourcemodel.time);
cfg.fsample = 1/mean(diff(cfg.sourcemodel.time{1})); % determine from time-axis
cfg.trllen = length(cfg.sourcemodel.time{1})/cfg.fsample;
cfg.baseline = -cfg.sourcemodel.time{1}(1);
elseif ~isempty(cfg.sourcemodel.signal)
cfg.numtrl = length(cfg.sourcemodel.signal);
cfg.fsample = ft_getopt(cfg, 'fsample', 1000);
cfg.trllen = length(cfg.sourcemodel.signal{1})/cfg.fsample;
cfg.baseline = ft_getopt(cfg, 'baseline', 0);
else
cfg.numtrl = ft_getopt(cfg, 'numtrl', 10);
cfg.fsample = ft_getopt(cfg, 'fsample', 1000);
cfg.trllen = ft_getopt(cfg, 'trllen', 1);
cfg.baseline = ft_getopt(cfg, 'baseline', 0);
end
% no signal was given, set some additional defaults
if isempty(cfg.sourcemodel.signal)
cfg.sourcemodel.frequency = ft_getopt(cfg, 'frequency', ones(Ndipoles,1)*10);
cfg.sourcemodel.phase = ft_getopt(cfg, 'phase', zeros(Ndipoles,1));
cfg.sourcemodel.amplitude = ft_getopt(cfg, 'amplitude', ones(Ndipoles,1));
end
if isfield(cfg.sourcemodel, 'frequency')
% this should be a column vector
cfg.sourcemodel.frequency = cfg.sourcemodel.frequency(:);
end
if isfield(cfg.sourcemodel, 'phase')
% this should be a column vector
cfg.sourcemodel.phase = cfg.sourcemodel.phase(:);
end
if ~isempty(cfg.sourcemodel.time)
% use the user-supplied time vectors
diptime = cfg.sourcemodel.time;
else
% construct a time axis for every trial
nsample = round(cfg.trllen*cfg.fsample);
diptime = cell(1, cfg.numtrl);
for iTr = 1:cfg.numtrl
diptime{iTr} = (((1:nsample)-1)/cfg.fsample) - cfg.baseline;
end
end
if ~isempty(cfg.sourcemodel.signal)
% use the user-supplied signal for the dipoles
dipsignal = cfg.sourcemodel.signal;
else
dipsignal = cell(1, cfg.numtrl);
for iTr = 1:cfg.numtrl
% compute a cosine signal with the desired frequency, phase and amplitude for each dipole
for i=1:Ndipoles
dipsignal{iTr}(i,:) = cos(cfg.sourcemodel.frequency(i)*diptime{iTr}*2*pi + cfg.sourcemodel.phase(i)) * cfg.sourcemodel.amplitude(i);
end
end
end
dippos = cfg.sourcemodel.pos;
dipmom = cfg.sourcemodel.mom;
if ~iscell(dipmom)
dipmom = {dipmom};
end
if ~iscell(dippos)
dippos = {dippos};
end
if length(dippos)==1
dippos = repmat(dippos, 1, cfg.numtrl);
elseif length(dippos)~=cfg.numtrl
ft_error('incorrect number of trials specified in the dipole position');
end
if length(dipmom)==1
dipmom = repmat(dipmom, 1, cfg.numtrl);
elseif length(dipmom)~=cfg.numtrl
ft_error('incorrect number of trials specified in the dipole moment');
end
data.time = diptime;
data.trial = {};
ft_progress('init', cfg.feedback, 'computing data data');
for trial=1:cfg.numtrl
ft_progress(trial/cfg.numtrl, 'computing data data for trial %d\n', trial);
if numel(cfg.chanunit) == numel(cfg.channel)
lf = ft_compute_leadfield(dippos{trial}, sens, headmodel, 'dipoleunit', cfg.dipoleunit, 'chanunit', cfg.chanunit, leadfieldopt{:});
else
lf = ft_compute_leadfield(dippos{trial}, sens, headmodel, leadfieldopt{:});
end
nsamples = size(dipsignal{trial},2);
nchannels = size(lf,1);
data.trial{trial} = zeros(nchannels,nsamples);
for i = 1:3
data.trial{trial} = data.trial{trial} + ...
lf(:,i:3:end) * (repmat(dipmom{trial}(i:3:end),1,nsamples) .* dipsignal{trial});
end
end
ft_progress('close');
if ft_senstype(sens, 'meg')
data.grad = sens;
elseif ft_senstype(sens, 'eeg')
data.elec = sens;
end
% determine RMS value of data data
ss = 0;
sc = 0;
for trial=1:cfg.numtrl
ss = ss + sum(data.trial{trial}(:).^2);
sc = sc + length(data.trial{trial}(:));
end
rms = sqrt(ss/sc);
ft_info('RMS value of data data is %g\n', rms);
% add noise to the data data
for trial=1:cfg.numtrl
relnoise = randn(size(data.trial{trial})) * cfg.relnoise * rms;
absnoise = randn(size(data.trial{trial})) * cfg.absnoise;
data.trial{trial} = data.trial{trial} + relnoise + absnoise;
end
data.fsample = cfg.fsample;
data.label = sens.label;
% do the general cleanup and bookkeeping at the end of the function
ft_postamble debug
ft_postamble randomseed
ft_postamble provenance data
ft_postamble history data
ft_postamble savevar data