-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathinfer.py
365 lines (324 loc) · 15.4 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
import argparse
import os
import tensorflow as tf
from joblib import dump
from tqdm import tqdm
import numpy as np
from editdistance import eval as edist
import librosa
import pandas as pd
import utils
from model_helper import las_model_fn
from utils import get_ipa
SAMPLE_RATE = 16000
#TODO: move to parameters
WIN_LEN = 0.02 * SAMPLE_RATE
WIN_STEP = 0.01 * SAMPLE_RATE
def parse_args():
parser = argparse.ArgumentParser(
description='Listen, Attend and Spell(LAS) implementation based on Tensorflow. '
'The model utilizes input pipeline and estimator API of Tensorflow, '
'which makes the training procedure truly end-to-end.')
parser.add_argument('--data', type=str, required=True,
help='inference data in TFRecord format')
parser.add_argument('--plain_targets', type=str, help='Path to CSV file with targets.')
parser.add_argument('--vocab', type=str, required=True,
help='vocabulary table, listing vocabulary line by line')
parser.add_argument('--norm', type=str, default=None,
help='normalization params')
parser.add_argument('--mapping', type=str,
help='additional mapping when evaluation')
parser.add_argument('--model_dir', type=str, required=True,
help='path of imported model')
parser.add_argument('--beam_width', type=int, default=0,
help='number of beams (default 0: using greedy decoding)')
parser.add_argument('--batch_size', type=int, default=8,
help='batch size')
parser.add_argument('--num_channels', type=int, default=39,
help='number of input channels')
parser.add_argument('--delimiter', help='Symbols delimiter. Default: " "', type=str, default=' ')
parser.add_argument('--take', help='Use this number of elements (0 for all).', type=int, default=0)
parser.add_argument('--binf_map', type=str, default='misc/binf_map.csv',
help='Path to CSV with phonemes to binary features map')
parser.add_argument('--use_phones_from_binf', help='User phonemes decoded from binary features decoder outputs.',
action='store_true')
parser.add_argument('--convert_targets_to_ipa', help='Convert targets to ipa before comparison.',
action='store_true')
parser.add_argument('--calc_frame_binf_accuracy', help='Calculate binary features accuracy on frame leve. For TIMIT only!',
action='store_true')
parser.add_argument('--mapping_for_frame_accuracy', type=str,
help='additional mapping when evaluating frame level accuracy. For TIMIT only!')
parser.add_argument('--encoder_frame_step', type=int, default=40,
help='Encoder output frame step to be used for frame accuracy calculation.'
'Should be used only if --use_pyramidal was specified at trainig. For TIMIT only!')
parser.add_argument('--use_markup_segments', action='store_true',
help='Map phonemes to markup segments using peaks in attention matrix. For TIMIT only!')
return parser.parse_args()
def to_text(vocab_list, sample_ids):
sym_list = [vocab_list[x] for x in sample_ids] + [utils.EOS]
return args.delimiter.join(sym_list[:sym_list.index(utils.EOS)])
def phrase_to_binfs(phrase, df_mapping):
binfs = np.zeros((len(phrase), len(df_mapping.index)), np.int)
for i, phone in enumerate(phrase):
binfs[i, :] = df_mapping[phone].values
return binfs
def soft2hard_attention(attention):
'''
Convert soft attention to hard attention using DTW
'''
from fastdtw import dtw
_, path = dtw(list(range(attention.shape[0])), list(range(attention.shape[1])),
dist=lambda x, y: -attention[int(x), int(y)])
hard_attention = np.zeros_like(attention)
for i, j in path:
hard_attention[i, j] = 1
for frame in range(attention.shape[1]):
inds = np.argwhere(hard_attention[:, frame] == 1)
if inds.size <= 1:
continue
if attention[inds[0], frame] > attention[inds[-1], frame]:
if frame < attention.shape[1] - 1 and hard_attention[inds[-1], frame + 1] == 1:
hard_attention[inds[-1], frame] = 0
else:
if frame > 0 and hard_attention[inds[0], frame - 1] == 1:
hard_attention[inds[0], frame] = 0
return hard_attention
def attention_to_segments(attention):
"""
:param attention: Attantion matrix, the last dimension corresponds to the input sequence
"""
attention = soft2hard_attention(attention)
alignment = []
st_frame, en_frame, st_phone, en_phone, phone = 0, 0, 0, 0, 0
phone2seg = np.zeros((attention.shape[0]), np.int32)
for frame in range(attention.shape[1]):
inds = np.argwhere(attention[:, frame] == 1)
if inds.size > 0:
phone = inds[-1][0]
if phone > en_phone and frame > 0:
en_phone = phone
en_frame = frame
alignment.append([st_frame, en_frame, st_phone, en_phone])
phone2seg[st_phone:en_phone] = len(alignment) - 1
st_phone = en_phone
st_frame = en_frame
alignment.append([st_frame, attention.shape[1],
st_phone, attention.shape[0]])
phone2seg[st_phone:attention.shape[0]] = len(alignment) - 1
alignment = np.vstack(alignment).astype(np.float)
return alignment, phone2seg
def segments_to_attention(attention, markup_segments, text, df_mapping, binf_preds=None):
SEARCH_WINDOW = 5 #phonemes
last_phone = 0
nphones = attention.shape[0]
nfeatures = len(df_mapping.index)
binfs = np.zeros((len(markup_segments), nfeatures))
for i, segment in enumerate(markup_segments):
phones_limit = min(last_phone + SEARCH_WINDOW, nphones)
st = segment[0]
en = max(segment[1], st + 1)
phone = last_phone + np.squeeze(np.argmax(np.max(attention[last_phone:phones_limit, st:en], axis=1)))
if binf_preds is None:
binfs[i, :] = df_mapping[text[phone]].values
else:
binfs[i, :] = binf_preds[phone, :]
return binfs
def segs_phones_to_frame_binf(alignment, phones, df_mapping, binf_preds=None):
nfeatures = len(df_mapping.index)
nframes_aligned = alignment.shape[0]
nframes = int(alignment[-1, 1])
frames_binf = np.zeros((nframes, nfeatures))
for aligned_frame_ind in range(nframes_aligned):
binfs = np.zeros((nfeatures), np.bool)
st_phone = int(alignment[aligned_frame_ind, 2])
en_phone = int(alignment[aligned_frame_ind, 3])
for phone_ind in range(st_phone, en_phone):
if binf_preds is not None:
current_binfs = binf_preds[phone_ind, :]
else:
current_binfs = df_mapping[phones[phone_ind]].values
binfs = np.logical_or(binfs, current_binfs)
st = int(alignment[aligned_frame_ind, 0])
en = int(alignment[aligned_frame_ind, 1])
frames_binf[st:en, :] = binfs
return frames_binf
def get_timit_binf_markup(sound_file, df_mapping, markup_mapping):
nfeatures = len(df_mapping.index)
phn_file = sound_file.replace('.WAV', '.PHN')
with open(phn_file, 'r') as fid:
lines = fid.read().strip().split('\n')
nphones = len(lines)
markup = np.zeros((nphones, 2))
binfs = np.zeros((nphones, nfeatures), np.bool)
for i, line in enumerate(lines):
st, en, phone = line.split()
phone = markup_mapping[phone]
if phone is None:
phone = 'sil'
markup[i, :] = [int(st), int(en)]
binfs[i, :] = df_mapping[phone].values
markup = markup / SAMPLE_RATE
wav, _ = librosa.load(sound_file, SAMPLE_RATE)
nsamples = len(wav)
return markup, binfs, nsamples
def get_binf_markup_frames(markup_frames, binfs):
nframes = markup_frames[-1, -1]
nfeatures = binfs.shape[1]
frames_binf = np.zeros((nframes, nfeatures), np.bool)
for frame, binf in zip(markup_frames, binfs):
frames_binf[frame[0]:frame[1]] = np.logical_or(frames_binf[frame[0]:frame[1]], binf)
return frames_binf
def count_correct(binf_pred, binf_tgt):
return np.sum(np.equal(binf_pred, binf_tgt), axis=0)
def main(args):
config = tf.estimator.RunConfig(model_dir=args.model_dir)
hparams = utils.create_hparams(args)
hparams.decoder.set_hparam('beam_width', args.beam_width)
vocab_list = utils.load_vocab(args.vocab)
vocab_list_orig = vocab_list
binf2phone_np = None
binf2phone = None
mapping = None
if hparams.decoder.binary_outputs:
if args.mapping is not None:
vocab_list, mapping = utils.get_mapping(args.mapping, args.vocab)
hparams.del_hparam('mapping')
hparams.add_hparam('mapping', mapping)
binf2phone = utils.load_binf2phone(args.binf_map, vocab_list)
binf2phone_np = binf2phone.values
def model_fn(features, labels,
mode, config, params):
return las_model_fn(features, labels, mode, config, params,
binf2phone=binf2phone_np)
model = tf.estimator.Estimator(
model_fn=model_fn,
config=config,
params=hparams)
phone_pred_key = 'sample_ids_phones_binf' if args.use_phones_from_binf else 'sample_ids'
predict_keys=[phone_pred_key, 'embedding', 'alignment']
if args.use_phones_from_binf:
predict_keys.append('logits_binf')
predict_keys.append('alignment_binf')
predictions = model.predict(
input_fn=lambda: utils.input_fn(
args.data, args.vocab, args.norm, num_channels=args.num_channels, batch_size=args.batch_size,
take=args.take, is_infer=True),
predict_keys=predict_keys)
if args.calc_frame_binf_accuracy:
with open(args.mapping_for_frame_accuracy, 'r') as fid:
mapping_lines = fid.read().strip().split()
mapping_targets = dict()
for line in mapping_lines:
phones = line.split('\t')
if len(phones) < 3:
mapping_targets[phones[0]] = None
else:
mapping_targets[phones[0]] = phones[-1]
predictions = list(predictions)
if args.plain_targets:
targets = []
for line in open(args.plain_targets, 'r'):
delim = ','
if '\t' in line:
delim = '\t'
cells = line.split(delim)
sound, lang, phrase = cells[:3]
if args.convert_targets_to_ipa:
if len(cells) == 4:
phrase = cells[-1].split(',')
else:
phrase = get_ipa(phrase, lang)
else:
phrase = phrase.split()
phrase = [x.strip().lower() for x in phrase]
if args.calc_frame_binf_accuracy:
markup, binfs, nsamples = get_timit_binf_markup(sound, binf2phone, mapping_targets)
targets.append((phrase, markup, binfs, nsamples))
else:
targets.append(phrase)
save_to = os.path.join(args.model_dir, 'infer_targets.txt')
with open(save_to, 'w') as f:
f.write('\n'.join(args.delimiter.join(t) for t in targets))
err = 0
tot = 0
optimistic_err = 0
if args.calc_frame_binf_accuracy:
frames_count = 0
correct_frames_count = np.zeros((len(binf2phone.index)))
for p, target in tqdm(zip(predictions, targets)):
first_text = []
min_err = 100000
beams = p[phone_pred_key].T
if len(beams.shape) > 1:
for bi, i in enumerate(p['sample_ids'].T):
i = i.tolist() + [utils.EOS_ID]
i = i[:i.index(utils.EOS_ID)]
text = to_text(vocab_list, i)
text = text.split(args.delimiter)
min_err = min([min_err, edist(text, t)])
if bi == 0:
first_text = text.copy()
i = first_text
else:
i = beams.tolist() + [utils.EOS_ID]
i = i[:i.index(utils.EOS_ID)]
text = to_text(vocab_list, i)
first_text = text.split(args.delimiter)
t = target[0] if args.calc_frame_binf_accuracy else target
if mapping is not None:
target_ids = np.array([vocab_list_orig.index(p) for p in t])
target_ids = np.array(mapping)[target_ids]
t = [vocab_list[i] for i in target_ids]
err += edist(first_text, t)
optimistic_err += min_err
tot += len(t)
if args.calc_frame_binf_accuracy:
attention = p['alignment'][:len(first_text), :]
binf_preds = None
if args.use_phones_from_binf:
logits = p['logits_binf'][:-1, :]
binf_preds = np.round(1 / (1 + np.exp(-logits)))
attention = p['alignment_binf'][:binf_preds.shape[0], :]
markup, binfs, nsamples = target[1:]
markup = np.minimum(markup, nsamples / SAMPLE_RATE)
markup_frames = librosa.time_to_frames(markup, SAMPLE_RATE,
args.encoder_frame_step * SAMPLE_RATE / 1000, WIN_LEN)
markup_frames[markup_frames < 0] = 0
markup_frames_binf = get_binf_markup_frames(markup_frames, binfs)
if not args.use_markup_segments:
alignment, _ = attention_to_segments(attention)
pred_frames_binf = segs_phones_to_frame_binf(alignment, first_text, binf2phone, binf_preds)
else:
binfs_pred = segments_to_attention(attention, markup_frames, first_text, binf2phone, binf_preds)
pred_frames_binf = get_binf_markup_frames(markup_frames, binfs_pred)
if pred_frames_binf.shape[0] != markup_frames_binf.shape[0]:
print('Warining: sound {} prediction frames {} target frames {}'.format(t,
pred_frames_binf.shape[0], markup_frames_binf.shape[0]))
nframes_fixed = min(pred_frames_binf.shape[0], markup_frames_binf.shape[0])
pred_frames_binf = pred_frames_binf[:nframes_fixed, :]
markup_frames_binf = markup_frames_binf[:nframes_fixed, :]
correct_frames_count += count_correct(pred_frames_binf, markup_frames_binf)
frames_count += markup_frames_binf.shape[0]
# Compare binary feature vectors
print(f'PER: {100 * err / tot:2.2f}%')
print(f'Optimistic PER: {100 * optimistic_err / tot:2.2f}%')
if args.calc_frame_binf_accuracy:
df = pd.DataFrame({'correct': correct_frames_count / frames_count}, index=binf2phone.index)
print(df)
if args.beam_width > 0:
predictions = [{
'transcription': to_text(vocab_list, y[phone_pred_key][:, 0])
} for y in predictions]
else:
predictions = [{
'transcription': to_text(vocab_list, y[phone_pred_key])
} for y in predictions]
save_to = os.path.join(args.model_dir, 'infer.txt')
with open(save_to, 'w') as f:
f.write('\n'.join(p['transcription'] for p in predictions))
save_to = os.path.join(args.model_dir, 'infer.dmp')
dump(predictions, save_to)
if __name__ == '__main__':
tf.logging.set_verbosity(tf.logging.INFO)
args = parse_args()
main(args)