Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

4 tests fail #1063

Open
yurivict opened this issue Dec 9, 2024 · 0 comments
Open

4 tests fail #1063

yurivict opened this issue Dec 9, 2024 · 0 comments

Comments

@yurivict
Copy link

yurivict commented Dec 9, 2024

========================================================================================= FAILURES ==========================================================================================
________________________________________________________________________ test_scipy_method[trust-constr-True-False] _________________________________________________________________________

array_call = False, fixed = True, method = 'trust-constr'

    @pytest.mark.parametrize("array_call", (False, True))
    @pytest.mark.parametrize("fixed", (False, True))
    @pytest.mark.parametrize(
        "method",
        (
            "Nelder-Mead",
            "Powell",
            "CG",
            "BFGS",
            "Newton-CG",
            "L-BFGS-B",
            "TNC",
            "COBYLA",
            "SLSQP",
            "trust-constr",
            "dogleg",
            "trust-ncg",
            "trust-exact",
            "trust-krylov",
        ),
    )
    def test_scipy_method(array_call, fixed, method):
        fn = (lambda par: fcn(*par)) if array_call else fcn
    
        gr = None
        he = None
        hep = None
        if method in (
            "Newton-CG",
            "trust-constr",
            "dogleg",
            "trust-ncg",
            "trust-exact",
            "trust-krylov",
        ):
            gr = (lambda par: grad(*par)) if array_call else grad
        if method in ("Newton-CG", "dogleg", "trust-ncg", "trust-exact", "trust-krylov"):
            he = (lambda par: hess(*par)) if array_call else hess
        if method in ("Newton-CG", "trust-ncg", "trust-krylov", "trust-constr"):
            hep = (lambda par, v: hessp(*par, v)) if array_call else hessp
    
        if array_call:
            m = Minuit(fn, (1, 2), grad=gr)
        else:
            m = Minuit(fn, a=1, b=2, grad=gr)
    
        m.fixed[0] = fixed
    
>       m.scipy(method=method, hess=he)

tests/test_scipy.py:74: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
../stage/usr/local/lib/python3.11/site-packages/iminuit/minuit.py:1245: in scipy
    r = minimize(
/usr/local/lib/python3.11/site-packages/scipy/optimize/_minimize.py:722: in minimize
    res = _minimize_trustregion_constr(fun, x0, args, jac, hess, hessp,
/usr/local/lib/python3.11/site-packages/scipy/optimize/_trustregion_constr/minimize_trustregion_constr.py:514: in _minimize_trustregion_constr
    _, result = equality_constrained_sqp(
/usr/local/lib/python3.11/site-packages/scipy/optimize/_trustregion_constr/equality_constrained_sqp.py:80: in equality_constrained_sqp
    Z, LS, Y = projections(A, factorization_method)
/usr/local/lib/python3.11/site-packages/scipy/optimize/_trustregion_constr/projections.py:393: in projections
    = augmented_system_projections(A, m, n, orth_tol, max_refin, tol)
/usr/local/lib/python3.11/site-packages/scipy/optimize/_trustregion_constr/projections.py:101: in augmented_system_projections
    solve = scipy.sparse.linalg.factorized(K)
/usr/local/lib/python3.11/site-packages/scipy/sparse/linalg/_dsolve/linsolve.py:565: in factorized
    umf.numeric(A)
/usr/local/lib/python3.11/site-packages/scikits/umfpack/umfpack.py:555: in numeric
    self.symbolic(mtx)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

self = <scikits.umfpack.umfpack.UmfpackContext object at 0x2cb6dd94d2d0>
mtx = <1x1 sparse matrix of type '<class 'numpy.float64'>'
        with 1 stored elements in Compressed Sparse Column format>

    def symbolic(self, mtx):
        """
        Perform symbolic object (symbolic LU decomposition) computation for a given
        sparsity pattern.
        """
        self.free_symbolic()
    
        indx = self._getIndx(mtx)
    
        if not assumeSortedIndices:
            # row/column indices cannot be assumed to be sorted
            mtx.sort_indices()
    
        if self.isReal:
            status, self._symbolic\
>                   = self.funs.symbolic(mtx.shape[0], mtx.shape[1],
                                          mtx.indptr,
                                          indx,
                                          mtx.data,
                                          self.control, self.info)
E           TypeError: umfpack_dl_symbolic() missing 1 required positional argument: 'Info'

/usr/local/lib/python3.11/site-packages/scikits/umfpack/umfpack.py:522: TypeError
________________________________________________________________________ test_scipy_method[trust-constr-False-True] _________________________________________________________________________

array_call = True, fixed = False, method = 'trust-constr'

    @pytest.mark.parametrize("array_call", (False, True))
    @pytest.mark.parametrize("fixed", (False, True))
    @pytest.mark.parametrize(
        "method",
        (
            "Nelder-Mead",
            "Powell",
            "CG",
            "BFGS",
            "Newton-CG",
            "L-BFGS-B",
            "TNC",
            "COBYLA",
            "SLSQP",
            "trust-constr",
            "dogleg",
            "trust-ncg",
            "trust-exact",
            "trust-krylov",
        ),
    )
    def test_scipy_method(array_call, fixed, method):
        fn = (lambda par: fcn(*par)) if array_call else fcn
    
        gr = None
        he = None
        hep = None
        if method in (
            "Newton-CG",
            "trust-constr",
            "dogleg",
            "trust-ncg",
            "trust-exact",
            "trust-krylov",
        ):
            gr = (lambda par: grad(*par)) if array_call else grad
        if method in ("Newton-CG", "dogleg", "trust-ncg", "trust-exact", "trust-krylov"):
            he = (lambda par: hess(*par)) if array_call else hess
        if method in ("Newton-CG", "trust-ncg", "trust-krylov", "trust-constr"):
            hep = (lambda par, v: hessp(*par, v)) if array_call else hessp
    
        if array_call:
            m = Minuit(fn, (1, 2), grad=gr)
        else:
            m = Minuit(fn, a=1, b=2, grad=gr)
    
        m.fixed[0] = fixed
    
>       m.scipy(method=method, hess=he)

tests/test_scipy.py:74: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
../stage/usr/local/lib/python3.11/site-packages/iminuit/minuit.py:1245: in scipy
    r = minimize(
/usr/local/lib/python3.11/site-packages/scipy/optimize/_minimize.py:722: in minimize
    res = _minimize_trustregion_constr(fun, x0, args, jac, hess, hessp,
/usr/local/lib/python3.11/site-packages/scipy/optimize/_trustregion_constr/minimize_trustregion_constr.py:514: in _minimize_trustregion_constr
    _, result = equality_constrained_sqp(
/usr/local/lib/python3.11/site-packages/scipy/optimize/_trustregion_constr/equality_constrained_sqp.py:80: in equality_constrained_sqp
    Z, LS, Y = projections(A, factorization_method)
/usr/local/lib/python3.11/site-packages/scipy/optimize/_trustregion_constr/projections.py:393: in projections
    = augmented_system_projections(A, m, n, orth_tol, max_refin, tol)
/usr/local/lib/python3.11/site-packages/scipy/optimize/_trustregion_constr/projections.py:101: in augmented_system_projections
    solve = scipy.sparse.linalg.factorized(K)
/usr/local/lib/python3.11/site-packages/scipy/sparse/linalg/_dsolve/linsolve.py:565: in factorized
    umf.numeric(A)
/usr/local/lib/python3.11/site-packages/scikits/umfpack/umfpack.py:555: in numeric
    self.symbolic(mtx)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

self = <scikits.umfpack.umfpack.UmfpackContext object at 0x2cb6dd792f90>
mtx = <2x2 sparse matrix of type '<class 'numpy.float64'>'
        with 2 stored elements in Compressed Sparse Column format>

    def symbolic(self, mtx):
        """
        Perform symbolic object (symbolic LU decomposition) computation for a given
        sparsity pattern.
        """
        self.free_symbolic()
    
        indx = self._getIndx(mtx)
    
        if not assumeSortedIndices:
            # row/column indices cannot be assumed to be sorted
            mtx.sort_indices()
    
        if self.isReal:
            status, self._symbolic\
>                   = self.funs.symbolic(mtx.shape[0], mtx.shape[1],
                                          mtx.indptr,
                                          indx,
                                          mtx.data,
                                          self.control, self.info)
E           TypeError: umfpack_dl_symbolic() missing 1 required positional argument: 'Info'

/usr/local/lib/python3.11/site-packages/scikits/umfpack/umfpack.py:522: TypeError
_________________________________________________________________________ test_scipy_method[trust-constr-True-True] _________________________________________________________________________

array_call = True, fixed = True, method = 'trust-constr'

    @pytest.mark.parametrize("array_call", (False, True))
    @pytest.mark.parametrize("fixed", (False, True))
    @pytest.mark.parametrize(
        "method",
        (
            "Nelder-Mead",
            "Powell",
            "CG",
            "BFGS",
            "Newton-CG",
            "L-BFGS-B",
            "TNC",
            "COBYLA",
            "SLSQP",
            "trust-constr",
            "dogleg",
            "trust-ncg",
            "trust-exact",
            "trust-krylov",
        ),
    )
    def test_scipy_method(array_call, fixed, method):
        fn = (lambda par: fcn(*par)) if array_call else fcn
    
        gr = None
        he = None
        hep = None
        if method in (
            "Newton-CG",
            "trust-constr",
            "dogleg",
            "trust-ncg",
            "trust-exact",
            "trust-krylov",
        ):
            gr = (lambda par: grad(*par)) if array_call else grad
        if method in ("Newton-CG", "dogleg", "trust-ncg", "trust-exact", "trust-krylov"):
            he = (lambda par: hess(*par)) if array_call else hess
        if method in ("Newton-CG", "trust-ncg", "trust-krylov", "trust-constr"):
            hep = (lambda par, v: hessp(*par, v)) if array_call else hessp
    
        if array_call:
            m = Minuit(fn, (1, 2), grad=gr)
        else:
            m = Minuit(fn, a=1, b=2, grad=gr)
    
        m.fixed[0] = fixed
    
>       m.scipy(method=method, hess=he)

tests/test_scipy.py:74: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
../stage/usr/local/lib/python3.11/site-packages/iminuit/minuit.py:1245: in scipy
    r = minimize(
/usr/local/lib/python3.11/site-packages/scipy/optimize/_minimize.py:722: in minimize
    res = _minimize_trustregion_constr(fun, x0, args, jac, hess, hessp,
/usr/local/lib/python3.11/site-packages/scipy/optimize/_trustregion_constr/minimize_trustregion_constr.py:514: in _minimize_trustregion_constr
    _, result = equality_constrained_sqp(
/usr/local/lib/python3.11/site-packages/scipy/optimize/_trustregion_constr/equality_constrained_sqp.py:80: in equality_constrained_sqp
    Z, LS, Y = projections(A, factorization_method)
/usr/local/lib/python3.11/site-packages/scipy/optimize/_trustregion_constr/projections.py:393: in projections
    = augmented_system_projections(A, m, n, orth_tol, max_refin, tol)
/usr/local/lib/python3.11/site-packages/scipy/optimize/_trustregion_constr/projections.py:101: in augmented_system_projections
    solve = scipy.sparse.linalg.factorized(K)
/usr/local/lib/python3.11/site-packages/scipy/sparse/linalg/_dsolve/linsolve.py:565: in factorized
    umf.numeric(A)
/usr/local/lib/python3.11/site-packages/scikits/umfpack/umfpack.py:555: in numeric
    self.symbolic(mtx)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

self = <scikits.umfpack.umfpack.UmfpackContext object at 0x2cb6dd5c96d0>
mtx = <1x1 sparse matrix of type '<class 'numpy.float64'>'
        with 1 stored elements in Compressed Sparse Column format>

    def symbolic(self, mtx):
        """
        Perform symbolic object (symbolic LU decomposition) computation for a given
        sparsity pattern.
        """
        self.free_symbolic()
    
        indx = self._getIndx(mtx)
    
        if not assumeSortedIndices:
            # row/column indices cannot be assumed to be sorted
            mtx.sort_indices()
    
        if self.isReal:
            status, self._symbolic\
>                   = self.funs.symbolic(mtx.shape[0], mtx.shape[1],
                                          mtx.indptr,
                                          indx,
                                          mtx.data,
                                          self.control, self.info)
E           TypeError: umfpack_dl_symbolic() missing 1 required positional argument: 'Info'

/usr/local/lib/python3.11/site-packages/scikits/umfpack/umfpack.py:522: TypeError
________________________________________________________________________ test_scipy_method[trust-constr-False-False] ________________________________________________________________________

array_call = False, fixed = False, method = 'trust-constr'

    @pytest.mark.parametrize("array_call", (False, True))
    @pytest.mark.parametrize("fixed", (False, True))
    @pytest.mark.parametrize(
        "method",
        (
            "Nelder-Mead",
            "Powell",
            "CG",
            "BFGS",
            "Newton-CG",
            "L-BFGS-B",
            "TNC",
            "COBYLA",
            "SLSQP",
            "trust-constr",
            "dogleg",
            "trust-ncg",
            "trust-exact",
            "trust-krylov",
        ),
    )
    def test_scipy_method(array_call, fixed, method):
        fn = (lambda par: fcn(*par)) if array_call else fcn
    
        gr = None
        he = None
        hep = None
        if method in (
            "Newton-CG",
            "trust-constr",
            "dogleg",
            "trust-ncg",
            "trust-exact",
            "trust-krylov",
        ):
            gr = (lambda par: grad(*par)) if array_call else grad
        if method in ("Newton-CG", "dogleg", "trust-ncg", "trust-exact", "trust-krylov"):
            he = (lambda par: hess(*par)) if array_call else hess
        if method in ("Newton-CG", "trust-ncg", "trust-krylov", "trust-constr"):
            hep = (lambda par, v: hessp(*par, v)) if array_call else hessp
    
        if array_call:
            m = Minuit(fn, (1, 2), grad=gr)
        else:
            m = Minuit(fn, a=1, b=2, grad=gr)
    
        m.fixed[0] = fixed
    
>       m.scipy(method=method, hess=he)

tests/test_scipy.py:74: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
../stage/usr/local/lib/python3.11/site-packages/iminuit/minuit.py:1245: in scipy
    r = minimize(
/usr/local/lib/python3.11/site-packages/scipy/optimize/_minimize.py:722: in minimize
    res = _minimize_trustregion_constr(fun, x0, args, jac, hess, hessp,
/usr/local/lib/python3.11/site-packages/scipy/optimize/_trustregion_constr/minimize_trustregion_constr.py:514: in _minimize_trustregion_constr
    _, result = equality_constrained_sqp(
/usr/local/lib/python3.11/site-packages/scipy/optimize/_trustregion_constr/equality_constrained_sqp.py:80: in equality_constrained_sqp
    Z, LS, Y = projections(A, factorization_method)
/usr/local/lib/python3.11/site-packages/scipy/optimize/_trustregion_constr/projections.py:393: in projections
    = augmented_system_projections(A, m, n, orth_tol, max_refin, tol)
/usr/local/lib/python3.11/site-packages/scipy/optimize/_trustregion_constr/projections.py:101: in augmented_system_projections
    solve = scipy.sparse.linalg.factorized(K)
/usr/local/lib/python3.11/site-packages/scipy/sparse/linalg/_dsolve/linsolve.py:565: in factorized
    umf.numeric(A)
/usr/local/lib/python3.11/site-packages/scikits/umfpack/umfpack.py:555: in numeric
    self.symbolic(mtx)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

self = <scikits.umfpack.umfpack.UmfpackContext object at 0x2cb6dd80a910>
mtx = <2x2 sparse matrix of type '<class 'numpy.float64'>'
        with 2 stored elements in Compressed Sparse Column format>

    def symbolic(self, mtx):
        """
        Perform symbolic object (symbolic LU decomposition) computation for a given
        sparsity pattern.
        """
        self.free_symbolic()
    
        indx = self._getIndx(mtx)
    
        if not assumeSortedIndices:
            # row/column indices cannot be assumed to be sorted
            mtx.sort_indices()
    
        if self.isReal:
            status, self._symbolic\
>                   = self.funs.symbolic(mtx.shape[0], mtx.shape[1],
                                          mtx.indptr,
                                          indx,
                                          mtx.data,
                                          self.control, self.info)
E           TypeError: umfpack_dl_symbolic() missing 1 required positional argument: 'Info'

/usr/local/lib/python3.11/site-packages/scikits/umfpack/umfpack.py:522: TypeError
============================================================================== 4 failed, 674 passed in 53.97s ===============================================================================
*** Error code 1

Version: 2.30.1
Python-3.11
FreeBSD 14.1

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant