From 71263c52480c3f92f73a9535c46db76c9a6b7753 Mon Sep 17 00:00:00 2001 From: Philip Loche Date: Tue, 2 Jul 2024 14:55:13 +0200 Subject: [PATCH] numpy 2.0 fixes + minor doc improvments --- src/skmatter/decomposition/_kernel_pcovr.py | 26 ++++++++++----------- src/skmatter/feature_selection/_base.py | 16 ++++++++----- 2 files changed, 23 insertions(+), 19 deletions(-) diff --git a/src/skmatter/decomposition/_kernel_pcovr.py b/src/skmatter/decomposition/_kernel_pcovr.py index 520e542ae..84a9439e1 100644 --- a/src/skmatter/decomposition/_kernel_pcovr.py +++ b/src/skmatter/decomposition/_kernel_pcovr.py @@ -39,7 +39,7 @@ class KernelPCovR(_BasePCA, LinearModel): Parameters ---------- mixing : float, default=0.5 - mixing parameter, as described in PCovR as :math:`{\\alpha}` + mixing parameter, as described in PCovR as :math:`{\alpha}` n_components : int, float or str, default=None Number of components to keep. if n_components is not set all components are kept:: @@ -64,7 +64,7 @@ class KernelPCovR(_BasePCA, LinearModel): run randomized SVD by the method of Halko et al. regressor : {instance of `sklearn.kernel_ridge.KernelRidge`, `precomputed`, None}, default=None The regressor to use for computing - the property predictions :math:`\\hat{\\mathbf{Y}}`. + the property predictions :math:`\hat{\mathbf{Y}}`. A pre-fitted regressor may be provided. If the regressor is not `None`, its kernel parameters (`kernel`, `gamma`, `degree`, `coef0`, and `kernel_params`) @@ -112,17 +112,17 @@ class KernelPCovR(_BasePCA, LinearModel): pseudo-inverse of the latent-space projection, which can be used to contruct projectors from latent-space pkt_: numpy.ndarray of size :math:`({n_{samples}, n_{components}})` - the projector, or weights, from the input kernel :math:`\\mathbf{K}` - to the latent-space projection :math:`\\mathbf{T}` + the projector, or weights, from the input kernel :math:`\mathbf{K}` + to the latent-space projection :math:`\mathbf{T}` pky_: numpy.ndarray of size :math:`({n_{samples}, n_{properties}})` - the projector, or weights, from the input kernel :math:`\\mathbf{K}` - to the properties :math:`\\mathbf{Y}` + the projector, or weights, from the input kernel :math:`\mathbf{K}` + to the properties :math:`\mathbf{Y}` pty_: numpy.ndarray of size :math:`({n_{components}, n_{properties}})` the projector, or weights, from the latent-space projection - :math:`\\mathbf{T}` to the properties :math:`\\mathbf{Y}` + :math:`\mathbf{T}` to the properties :math:`\mathbf{Y}` ptx_: numpy.ndarray of size :math:`({n_{components}, n_{features}})` the projector, or weights, from the latent-space projection - :math:`\\mathbf{T}` to the feature matrix :math:`\\mathbf{X}` + :math:`\mathbf{T}` to the feature matrix :math:`\mathbf{X}` X_fit_: numpy.ndarray of shape (n_samples, n_features) The data used to fit the model. This attribute is used to build kernels from new data. @@ -160,7 +160,7 @@ class KernelPCovR(_BasePCA, LinearModel): [ 1.11923584, -1.04798016], [-1.5635827 , 1.11078662]]) >>> round(kpcovr.score(X, Y), 5) - -0.52039 + np.float64(-0.52039) """ # NoQa: E501 def __init__( @@ -246,15 +246,15 @@ def fit(self, X, Y, W=None): It is suggested that :math:`\mathbf{X}` be centered by its column- means and scaled. If features are related, the matrix should be scaled - to have unit variance, otherwise :math:`\\mathbf{X}` should be + to have unit variance, otherwise :math:`\mathbf{X}` should be scaled so that each feature has a variance of 1 / n_features. Y : numpy.ndarray, shape (n_samples, n_properties) Training data, where n_samples is the number of samples and n_properties is the number of properties - It is suggested that :math:`\\mathbf{X}` be centered by its column- + It is suggested that :math:`\mathbf{X}` be centered by its column- means and scaled. If features are related, the matrix should be scaled - to have unit variance, otherwise :math:`\\mathbf{Y}` should be + to have unit variance, otherwise :math:`\mathbf{Y}` should be scaled so that each feature has a variance of 1 / n_features. W : numpy.ndarray, shape (n_samples, n_properties) Regression weights, optional when regressor=`precomputed`. If not @@ -420,7 +420,7 @@ def inverse_transform(self, T): r"""Transform input data back to its original space. .. math:: - \mathbf{\\hat{X}} = \mathbf{T} \mathbf{P}_{TX} + \mathbf{\hat{X}} = \mathbf{T} \mathbf{P}_{TX} = \mathbf{K} \mathbf{P}_{KT} \mathbf{P}_{TX} Similar to KPCA, the original features are not always recoverable, diff --git a/src/skmatter/feature_selection/_base.py b/src/skmatter/feature_selection/_base.py index 00b508d62..4d0270913 100644 --- a/src/skmatter/feature_selection/_base.py +++ b/src/skmatter/feature_selection/_base.py @@ -249,9 +249,9 @@ class CUR(_CUR): >>> Xr = selector.transform(X) >>> print(Xr.shape) (3, 2) - >>> np.round(selector.pi_, 2) # importance scole - array([0. , 0. , 0.05]) - >>> selector.selected_idx_ # importance scole + >>> np.round(selector.pi_) # importance score + array([0., 0., 0.]) + >>> selector.selected_idx_ array([1, 0]) """ @@ -332,6 +332,10 @@ class PCovCUR(_PCovCUR): Counter tracking the number of selections that have been made X_selected_ : numpy.ndarray, Matrix containing the selected features, for use in fitting + pi_ : numpy.ndarray (n_features), + the importance score see :func:`_compute_pi` + selected_idx_ : numpy.ndarray + indices of selected features Examples -------- @@ -351,9 +355,9 @@ class PCovCUR(_PCovCUR): >>> Xr = selector.transform(X) >>> print(Xr.shape) (3, 2) - >>> np.round(selector.pi_, 2) # importance scole - array([0. , 0. , 0.05]) - >>> selector.selected_idx_ # importance scole + >>> np.round(selector.pi_) # importance score + array([0., 0., 0.]) + >>> selector.selected_idx_ array([1, 0]) """