forked from ComputerNerd/Retro-Graphics-Toolkit
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNEUQUANT.cpp
479 lines (357 loc) · 10.9 KB
/
NEUQUANT.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
/* NeuQuant Neural-Net Quantization Algorithm
* ------------------------------------------
*
* Copyright (c) 1994 Anthony Dekker
*
* NEUQUANT Neural-Net quantization algorithm by Anthony Dekker, 1994.
* See "Kohonen neural networks for optimal colour quantization"
* in "Network: Computation in Neural Systems" Vol. 5 (1994) pp 351-367.
* for a discussion of the algorithm.
* See also http://members.ozemail.com.au/~dekker/NEUQUANT.HTML
*
* Any party obtaining a copy of these files from the author, directly or
* indirectly, is granted, free of charge, a full and unrestricted irrevocable,
* world-wide, paid up, royalty-free, nonexclusive right and license to deal
* in this software and documentation files (the "Software"), including without
* limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons who receive
* copies from any such party to do so, with the only requirement being
* that this copyright notice remain intact.
*/
#include <stdint.h>
#include "NEUQUANT.H"
/* Network Definitions
------------------- */
static uint16_t netsize = maxnetsize;
static uint16_t maxnetpos = netsize - 1;
//#define maxnetpos (netsize-1)
#define netbiasshift 4 /* bias for colour values */
#define ncycles 100 /* no. of learning cycles */
/* defs for freq and bias */
#define intbiasshift 16 /* bias for fractions */
#define intbias (((int) 1)<<intbiasshift)
#define gammashift 10 /* gamma = 1024 */
#define gamma (((int) 1)<<gammashift)
#define betashift 10
#define beta (intbias>>betashift) /* beta = 1/1024 */
#define betagamma (intbias<<(gammashift-betashift))
/* defs for decreasing radius factor */
//#define initrad (maxnetsize>>3) /* for 256 cols, radius starts */
static uint8_t initrad = netsize >> 3;
#define radiusbiasshift 6 /* at 32.0 biased by 6 bits */
#define radiusbias (((int) 1)<<radiusbiasshift)
//#define initradius (initrad*radiusbias) /* and decreases by a */
static uint16_t initradius = initrad * radiusbias;
#define radiusdec 30 /* factor of 1/30 each cycle */
/* defs for decreasing alpha factor */
#define alphabiasshift 10 /* alpha starts at 1.0 */
#define initalpha (((int) 1)<<alphabiasshift)
int alphadec; /* biased by 10 bits */
/* radbias and alpharadbias used for radpower calculation */
#define radbiasshift 8
#define radbias (((int) 1)<<radbiasshift)
#define alpharadbshift (alphabiasshift+radbiasshift)
#define alpharadbias (((int) 1)<<alpharadbshift)
/* Types and Global Variables
-------------------------- */
static unsigned char *thepicture; /* the input image itself */
static int lengthcount; /* lengthcount = H*W*3 */
static int samplefac; /* sampling factor 1..30 */
typedef int pixel[4]; /* BGRc */
static pixel network[maxnetsize]; /* the network itself */
static int netindex[256]; /* for network lookup - really 256 */
static int bias [maxnetsize]; /* bias and freq arrays for learning */
static int freq [maxnetsize];
static int radpower[32]; /* radpower for precomputation */
/* Initialise network in range (0,0,0) to (255,255,255) and set parameters
----------------------------------------------------------------------- */
static void initnet(uint8_t * thepic, int len, int sample, uint16_t maxcol) {
netsize = maxcol;
maxnetpos = netsize - 1;
initrad = netsize >> 3;
initradius = initrad * radiusbias;
int i;
int *p;
thepicture = thepic;
lengthcount = len;
samplefac = sample;
for (i = 0; i < netsize; i++) {
p = network[i];
p[0] = p[1] = p[2] = (i << (netbiasshift + 8)) / netsize;
freq[i] = intbias / netsize; /* 1/netsize */
bias[i] = 0;
}
}
/* Unbias network to give byte values 0..255 and record position i to prepare for sort
----------------------------------------------------------------------------------- */
static void unbiasnet(void) {
int i, j, temp;
for (i = 0; i < netsize; i++) {
for (j = 0; j < 3; j++) {
/* OLD CODE: network[i][j] >>= netbiasshift; */
/* Fix based on bug report by Juergen Weigert jw@suse.de */
temp = (network[i][j] + (1 << (netbiasshift - 1))) >> netbiasshift;
if (temp > 255) temp = 255;
network[i][j] = temp;
}
network[i][3] = i; /* record colour no */
}
}
/* Output colour map
----------------- */
static void writecolourmap(uint8_t user_pal[3][256]) {
int i, j;
for (i = 2; i >= 0; i--)
for (j = 0; j < netsize; j++)
user_pal[i][j] = network[j][i];
}
/* Insertion sort of network and building of netindex[0..255] (to do after unbias)
------------------------------------------------------------------------------- */
static void inxbuild(void) {
int i, j, smallpos, smallval;
int *p, *q;
int previouscol, startpos;
previouscol = 0;
startpos = 0;
for (i = 0; i < netsize; i++) {
p = network[i];
smallpos = i;
smallval = p[1]; /* index on g */
/* find smallest in i..netsize-1 */
for (j = i + 1; j < netsize; j++) {
q = network[j];
if (q[1] < smallval) { /* index on g */
smallpos = j;
smallval = q[1]; /* index on g */
}
}
q = network[smallpos];
/* swap p (i) and q (smallpos) entries */
if (i != smallpos) {
j = q[0];
q[0] = p[0];
p[0] = j;
j = q[1];
q[1] = p[1];
p[1] = j;
j = q[2];
q[2] = p[2];
p[2] = j;
j = q[3];
q[3] = p[3];
p[3] = j;
}
/* smallval entry is now in position i */
if (smallval != previouscol) {
netindex[previouscol] = (startpos + i) >> 1;
for (j = previouscol + 1; j < smallval; j++) netindex[j] = i;
previouscol = smallval;
startpos = i;
}
}
netindex[previouscol] = (startpos + maxnetpos) >> 1;
for (j = previouscol + 1; j < 256; j++) netindex[j] = maxnetpos; /* really 256 */
}
/* Search for BGR values 0..255 (after net is unbiased) and return colour index
---------------------------------------------------------------------------- */
static int inxsearch(int b, int g, int r) {
int i, j, dist, a, bestd;
int *p;
int best;
bestd = 1000; /* biggest possible dist is 256*3 */
best = -1;
i = netindex[g]; /* index on g */
j = i - 1; /* start at netindex[g] and work outwards */
while ((i < netsize) || (j >= 0)) {
if (i < netsize) {
p = network[i];
dist = p[1] - g; /* inx key */
if (dist >= bestd) i = netsize; /* stop iter */
else {
i++;
if (dist < 0) dist = -dist;
a = p[0] - b;
if (a < 0) a = -a;
dist += a;
if (dist < bestd) {
a = p[2] - r;
if (a < 0) a = -a;
dist += a;
if (dist < bestd) {
bestd = dist;
best = p[3];
}
}
}
}
if (j >= 0) {
p = network[j];
dist = g - p[1]; /* inx key - reverse dif */
if (dist >= bestd) j = -1; /* stop iter */
else {
j--;
if (dist < 0) dist = -dist;
a = p[0] - b;
if (a < 0) a = -a;
dist += a;
if (dist < bestd) {
a = p[2] - r;
if (a < 0) a = -a;
dist += a;
if (dist < bestd) {
bestd = dist;
best = p[3];
}
}
}
}
}
return (best);
}
/* Search for biased BGR values
---------------------------- */
static int contest(int b, int g, int r) {
/* finds closest neuron (min dist) and updates freq */
/* finds best neuron (min dist-bias) and returns position */
/* for frequently chosen neurons, freq[i] is high and bias[i] is negative */
/* bias[i] = gamma*((1/netsize)-freq[i]) */
int i, dist, a, biasdist, betafreq;
int bestpos, bestbiaspos, bestd, bestbiasd;
int *p, *f, *n;
bestd = ~(((int) 1) << 31);
bestbiasd = bestd;
bestpos = -1;
bestbiaspos = bestpos;
p = bias;
f = freq;
for (i = 0; i < netsize; i++) {
n = network[i];
dist = n[0] - b;
if (dist < 0) dist = -dist;
a = n[1] - g;
if (a < 0) a = -a;
dist += a;
a = n[2] - r;
if (a < 0) a = -a;
dist += a;
if (dist < bestd) {
bestd = dist;
bestpos = i;
}
biasdist = dist - ((*p) >> (intbiasshift - netbiasshift));
if (biasdist < bestbiasd) {
bestbiasd = biasdist;
bestbiaspos = i;
}
betafreq = (*f >> betashift);
*f++ -= betafreq;
*p++ += (betafreq << gammashift);
}
freq[bestpos] += beta;
bias[bestpos] -= betagamma;
return (bestbiaspos);
}
/* Move neuron i towards biased (b,g,r) by factor alpha
---------------------------------------------------- */
static void altersingle(int alpha, int i, int b, int g, int r)
{
int *n;
n = network[i]; /* alter hit neuron */
*n -= (alpha * (*n - b)) / initalpha;
n++;
*n -= (alpha * (*n - g)) / initalpha;
n++;
*n -= (alpha * (*n - r)) / initalpha;
}
/* Move adjacent neurons by precomputed alpha*(1-((i-j)^2/[r]^2)) in radpower[|i-j|]
--------------------------------------------------------------------------------- */
static void alterneigh(int rad, int i, int b, int g, int r)
{
int j, k, lo, hi, a;
int *p, *q;
lo = i - rad;
if (lo < -1) lo = -1;
hi = i + rad;
if (hi > netsize) hi = netsize;
j = i + 1;
k = i - 1;
q = radpower;
while ((j < hi) || (k > lo)) {
a = (*(++q));
if (j < hi) {
p = network[j];
*p -= (a * (*p - b)) / alpharadbias;
p++;
*p -= (a * (*p - g)) / alpharadbias;
p++;
*p -= (a * (*p - r)) / alpharadbias;
j++;
}
if (k > lo) {
p = network[k];
*p -= (a * (*p - b)) / alpharadbias;
p++;
*p -= (a * (*p - g)) / alpharadbias;
p++;
*p -= (a * (*p - r)) / alpharadbias;
k--;
}
}
}
/* Main Learning Loop
------------------ */
static void learn(void) {
int i, j, b, g, r;
int radius, rad, alpha, step, delta, samplepixels;
unsigned char *p;
unsigned char *lim;
alphadec = 30 + ((samplefac - 1) / 3);
p = thepicture;
lim = thepicture + lengthcount;
samplepixels = lengthcount / (3 * samplefac);
delta = samplepixels / ncycles;
alpha = initalpha;
radius = initradius;
rad = radius >> radiusbiasshift;
if (rad <= 1) rad = 0;
for (i = 0; i < rad; i++)
radpower[i] = alpha * (((rad * rad - i * i) * radbias) / (rad * rad));
fprintf(stderr, "beginning 1D learning: initial radius=%d\n", rad);
if ((lengthcount % prime1) != 0) step = 3 * prime1;
else {
if ((lengthcount % prime2) != 0) step = 3 * prime2;
else {
if ((lengthcount % prime3) != 0) step = 3 * prime3;
else step = 3 * prime4;
}
}
i = 0;
while (i < samplepixels) {
b = p[0] << netbiasshift;
g = p[1] << netbiasshift;
r = p[2] << netbiasshift;
j = contest(b, g, r);
altersingle(alpha, j, b, g, r);
if (rad) alterneigh(rad, j, b, g, r); /* alter neighbours */
p += step;
if (p >= lim) p -= lengthcount;
i++;
if (i % delta == 0) {
alpha -= alpha / alphadec;
radius -= radius / radiusdec;
rad = radius >> radiusbiasshift;
if (rad <= 1) rad = 0;
for (j = 0; j < rad; j++)
radpower[j] = alpha * (((rad * rad - j * j) * radbias) / (rad * rad));
}
}
fprintf(stderr, "finished 1D learning: final alpha=%f !\n", ((float)alpha) / initalpha);
}
void NEU_wrapper(uint32_t w, uint32_t h, uint8_t * img_in, uint16_t colors_amount, uint8_t user_pal[3][256])
{
initnet(img_in, w * h * 3, 1, colors_amount);
learn();
unbiasnet();
writecolourmap(user_pal);
inxbuild();
}