-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstationarydistributions.tex
1776 lines (1635 loc) · 70.7 KB
/
stationarydistributions.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
%%% -*-LaTeX-*-
%%% stationarydistributions.tex.orig
%%% Prettyprinted by texpretty lex version 0.02 [21-May-2001]
%%% on Tue Mar 29 09:48:57 2022
%%% for Steve Dunbar (sdunbar@family-desktop)
\documentclass[12pt]{article}
\input{../../../../etc/macros}
\input{../../../../etc/mzlatex_macros}
%% \input{../../../../etc/pdf_macros}
\bibliographystyle{plain}
\begin{document}
\myheader \mytitle
\hr
\sectiontitle{Classes of States and Stationary Distributions}
\hr
\usefirefox
% \hr
% \visual{Study Tip}{../../../../CommonInformation/Lessons/studytip.png}
% \section*{Study Tip}
\hr
\visual{Rating}{../../../../CommonInformation/Lessons/rating.png}
\section*{Rating} %one of
% Everyone: contains no mathematics.
% Student: contains scenes of mild algebra or calculus that may require guidance.
% Mathematically Mature: may contain mathematics beyond calculus with proofs.
Mathematicians Only: prolonged scenes of intense rigor.
\hr
\visual{Section Starter Question}{../../../../CommonInformation/Lessons/question_mark.png}
\section*{Section Starter Question}
Randomly distribute three balls between two urns, labeled \( A \) and \(
B \). Each period, select an urn at random, and if it is not empty,
remove a ball from that urn and put it in the other urn. How can you
find the fraction of time urn \( A \) is empty? What is that fraction
of time? Does this depend on how the balls are initially distributed
between the two urns?
\hr
\visual{Key Concepts}{../../../../CommonInformation/Lessons/keyconcepts.png}
\section*{Key Concepts}
\begin{enumerate}
\item
The states of a Markov chain partition into equivalence classes
according to their type: communicating, periodic versus
aperiodic, recurrent versus transient, or positive recurrent
versus null recurrent.
\item
Every irreducible, aperiodic Markov chain has a unique
non-negative solution of
\begin{align*}
\sum\limits_{i} \pi_{i} P_{ij} &= \pi_{j} \\
\sum\limits_{i} \pi_{i} &= 1 \\
\end{align*}
called a stationary distribution.
\item
For an irreducible and aperiodic Markov chain,
\begin{enumerate}
\item
\[
\lim_{n \to \infty} (P^{n})_{ii} = \frac{1}{m_i} =
\pi_{ii}
\] and
\item
\[
\lim_{n \to \infty} (P^{n})_{ij} = \lim_{n \to
\infty} (P^ {n})_{ii} =\pi_{ij}.
\]
\end{enumerate}
\end{enumerate}
\hr
\visual{Vocabulary}{../../../../CommonInformation/Lessons/vocabulary.png}
\section*{Vocabulary}
\begin{enumerate}
\item
State \( j \) is \defn{accessible} from state \( i \) if \( (P^{n})_
{ij} > 0 \) for some \( n \ge 1 \).
\item
The states of a Markov chain partition into equivalence classes
according to their type: \defn{communicating}, \defn{periodic}
versus \defn{aperiodic}, and \defn{recurrent} versus \defn{transient},
\defn{positive recurrent} versus \defn{null recurrent}.
\item
The Markov chain is \defn{irreducible} if it has only one
communicating class.
\item
Let the random variable \( \tau_{ii} \) be the \defn{return time}
to state \( i \) given the chain starts in \( i \):
\begin{align*}
\tau_{ii} &= \min\setof{n \ge 1}{X_n = i \given X_0 = i}, \\
\tau_{ii} &= \infty \text{ if } X_n \ne i, n \ge 1.
\end{align*}
The distribution of \( \tau_{ii} \) is \( f^n_{ii} \). The
\defn {expected return time} \( m_i \) is \( \sum_ {\nu=1}^\infty
\nu f^\nu_{ii} \).
\item
If a state \( i \) is recurrent, then it is \defn{positive
recurrent} if, starting in \( i \), the expected time until the
process returns to state \( i \) is finite. Otherwise the state
is \defn{null recurrent}.
\item
Positive recurrent and aperiodic states are \defn{ergodic}.
\item
When the limit exists, let
\[
\pi_j = \lim_{n \to \infty} \frac{1}{n} \sum\limits_{\nu=1}^n
\indicatorrv{X_{\nu}= j \given X_0 = i}
\] denote the \defn{long run proportion of time the chain spends
in state \( j \)} or just the \emph{long run proportion} for
short.
\item
For a positive recurrent and aperiodic Markov chain the vector \(
(\pi_j) \) satisfies the set of the equations
\begin{align*}
\sum\limits_{i} \pi_{i} P_{ij} &= \pi_{j}\\
\sum\limits_{i} \pi_{i} &= 1 \\
\end{align*}
and is a \defn{stationary probability distribution} of the
Markov chain.
\end{enumerate}
\hr
\section*{Notation}
\begin{enumerate}
\item
\( i, j, l \) -- arbitrary or generic state indices
\item
\( (P^n)_{ij} \) -- the \( i,j \) entry of the \( n \)th power
of \( P \).
\item
\( d(i) \) -- the period of a state \( i \)
\item
\( \tau_{ii} \) -- the \defn{return time} to state \( i \) given
the chain starts in \( i \)
\item
\( \tau_{ij} \) -- the time to state \( j \) given the chain
starts in \( i \)
\item
\( f^n_{ii} \) -- the probability that starting from \( i \),
the first return to state \( i \) occurs at step \( n \)
\item
\( f_i = \Prob{\tau_{ii} < \infty} \) -- the probability that
starting in \( i \) the process will \emph{ever} reenter state \(
i \)
\item
\[
\pi_j = \lim_{n \to \infty} \frac{1}{n} \sum\limits_{\nu=1}^n
\indicatorrv{X_{\nu}= j \given X_0 = i}
\] -- the \defn{long run proportion of time the chain spends in
state \( j \)}
\item
\( m_i \) -- the \defn{expected return time} \( \sum_{\nu=1}^\infty
\nu f^\nu_{ii} \).
\end{enumerate}
\visual{Mathematical Ideas}{../../../../CommonInformation/Lessons/mathematicalideas.png}
\section*{Mathematical Ideas}
\subsection*{Classification of States}
\begin{definition}
State \( j \) is \defn{accessible} from state \( i \) if \( (P^{n})_
{ij} > 0 \) for some \( n \ge 1 \). That is, state \( j \) is
accessible from state \( i \) if and only if it is possible that the
process will enter state \( j \) in \( n \) steps, for some \( n \).
\end{definition}
\index{accessible}
\begin{definition}
Two states \defn{communicate} if state \( j \) is accessible from
state \( i \) and state \( i \) is accessible from \( j \).
\end{definition}
\index{communicate}
\begin{remark}
Note that it is possible that \( j \) is accessible from \( i \) but
that \( i \) and \( j \) do not communicate. An example is if \( j \)
is an absorbing state accessible from \( i \).
\end{remark}
\begin{proposition}
Communicating is an equivalence relation, so that the states of a
Markov chain partition into disjoint communicating classes.
\end{proposition}
\index{classes}
\begin{proof}
\begin{description}
\item[Reflexive:]
If \( i \) communicates with itself, then \( i \) is
accessible from \( i \) in \( n \) steps, and so \( i \) is
accessible from itself again in \( n \) steps, so
communication is reflexive.
\item[Symmetric:]
If \( i \) and \( j \) communicate, then state \( j \) is
accessible from state \( i \) in \( n_{ij} \) steps and
state \( i \) is accessible from state \( j \) in \( n_{ji} \)
steps. Therefore, state \( i \) is accessible from state \(
j \) in \( n_{ji} \) steps and state \( j \) is accessible
from state \( i \) in \( n_{ij} \) steps. That is,
communication between \( i \) and \( j \) is a symmetric
relation.
\item[Transitive:]
If \( i \) communicates with \( j \) and \( j \)
communicates with \( l \), then \( (P^{n_{ij}})_{ij} > 0 \)
for some \( n_{ij} \ge 1 \), and likewise \( (P^{n_{jl}})_{jl}
> 0 \) for some \( n_{jl} \ge 1 \). Then \( (P^{n_{ij}+n_{jl}})_
{il} > (P^{n_{ij}})_{ij}(P^{n_{jl}})_{jl} >0 \) and so it is
possible that the process can enter state \( l \) from \( i \)
in \( n = n_{ij} + n_{jl} \) steps, so \( l \) is accessible
from \( i \). Likewise, \( (P^{n_{lj}})_{lj} > 0 \) for
some \( n_{lj} \ge 1 \), and \( (P^{n_{ji}})_{ji} > 0 \) for
some \( n_{ji} \ge 1 \). Then \( (P^{n_{lj}})_{lj} (P^ {n_{ji}})_
{ji} >0 \) and so it is possible that the process can enter
state \( j \) in \( n = n_{lj} + n_{ji} \) steps, so \( i \)
is accessible from \( l \). That is, \( i \) and \( l \)
communicate and communication is transitive.
\end{description}
\end{proof}
\begin{definition}
The period of a state \( i \), written as \( d(i) \), is the
greatest common divisor of all integers \( n \ge 1 \) for which \( (P^n)_
{ii} > 0 \). If \( (P^{n})_{ii} = 0 \) for all \( n \), define \( d
(i) = 0 \).
\end{definition}
\index{period}
\begin{proposition}
\label{prop:stationarydistributions:communicating}
\begin{enumerate}
\item
If \( i \) communicates with \( j \), then \( d(i) = d(j) \).
\item
If state \( i \) has period \( d(i) \), then there exists an
integer \( N \) depending on \( i \) such that for all
integers \( n \ge N \), \( (P^{n d(i)})_{ii} > 0 \). That
is, return to state \( i \) can occur at all sufficiently
large multiples of the period \( d(i) \).
\item
If \( (P^m)_{ij} >0 \), then \( (P^{m + nd(i)})_{ij} > 0 \)
for all sufficiently large \( n \).
\end{enumerate}
\end{proposition}
\begin{remark}
The proofs of the second and third parts rely on the next lemma from
number theory, a generalization of a standard result about the
greatest common divisor of two integers.
\end{remark}
\begin{lemma}
\label{lem:stationarydistributions:numtheory} Let \( n_1, n_{2},
\dots, n_s \) be positive integers with greatest common divisor \( d
\). Then there exists a positive integer \( M \) such that if \( m
\ge M \) then there exist nonnegative integers \( c_1, c_2, \dots, c_s
\) such that
\[
md = \sum\limits_{\nu=1}^s c_\nu n_\nu.
\]
\end{lemma}
\begin{proof}
\begin{enumerate}
\item
Let
\[
A = \setof{n}{n=c_1n_1 + \cdots + c_s n_s, c_s \text{%
positive integers}}
\] and
\[
B = \setof{b_1 m_1 + \cdots + b_j m_j}{ m_i \in A , b_i
\in \Integers, j \ge 1, i=1,\dots, j}.
\]
\item
Let \( d' \) be the least \emph{positive} integer in \( B \),
where \( d' = b_1 m'_1 + \cdots + b_j m'_j \). Since \( m'_i
\in A \) for all \( i \), each can be written as \( m'_i =
c'_{1i}n_1 + \cdots + c'_{si}n_s \).
\item
The first claim is that \( d' \) is a common divisor of all
elements of \( A \). To prove the claim, let \( a = c_1 n_1
+ \cdots + c_s n_s \in A \). By the Division Algorithm let \(
a = d'q + r \) with \( 0 \le r < d' \). Then
\begin{align*}
r &= a - d' q \\
&= a - q (b_1 m'_1 + \cdots + b_j m'_j) \\
&= (c_1 n_1 + \cdots + c_s n_s) - q \left(\sum\limits_{i=1}^j
b_i\sum\limits_{\nu=1}^s c'_{\nu i} n_{\nu} \right) \\
&= \left( c_1 - q \sum\limits_{i=1}^j b_i c'_{1 i}
\right) n_1 + \cdots + \left( c_s - q \sum\limits_{i=1}^j
b_i c'_{s i} \right) n_s.
\end{align*}
\item
This means that \( r \in B \) (with \( m_i = 1 \cdot n_i \in
A \) and \( b_i = \left( c_i - q \sum\limits_{\nu=1}^j b_\nu
c'_{i \nu} \right) \)). Since \( 0 \le r < d' \), and \( d'
\) is the least \emph{positive} integer in \( B \), then \(
r = 0 \) and \( d' \) is a divisor of \( a \), establishing
the first claim.
\item
For simplicity drop the prime on \( d' \) so \( d' = d =
\gcd(n_1, \dots, n_s) \). As in the previous step,
rearrange the terms in the representation of \( d = b'_1 m_1
+ \cdots + b'_j m_j = \alpha_1 n_1 + \cdots + \alpha_s n_s \)
so that the terms with positive coefficients are written
first. Thus \( d' = N_1 - N_2 \) with \( N_1 \in A \) and \(
N_2 \in A \). Let \( M \) be the positive integer \( N_2^2/d
\) (a positive integer since \( d' \) is a divisor of \( N_{2}\in
A \)). Every integer \( m \ge M \) can be written as \( m =
M + K = N_2^2/d + K \), with \( K \ge 0 \). Using the
Division Algorithm \( K = q' (N_2/d) + r' \) with \( 0 \le
r' < N_2/d \) and the integer \( q' = \lfloor K/(N_2/d)
\rfloor \). Now
\begin{align*}
md &= (N_2^2/d + q' N_2/d + r') d \\
&= N_2^2 + q'N_2 + r'd \\
&= N_2^2 + q'N_2 + r'(N_1 - N_2) \\
&= N_2(N_2 + q' -r') + r' N_1.
\end{align*}
Recall that \( r' < N_2/d \), so \( r' \le N_2 \).
\item
Since \( N_2 \in A \) and \( N_1 \in A \), the previous step
shows there exist nonnegative integers \( c_1, c_2, \dots, c_s
\) such that
\[
md = \sum\limits_{\nu=1}^s c_\nu n_\nu.
\]
\end{enumerate}
\end{proof}
\begin{proof}[of Propostion~\ref
{prop:stationarydistributions:communicating}]
\begin{enumerate}
\item
\begin{enumerate}
\item
If \( i \) communicates with \( j \), then \( (P^{n_
{ij}})_{ij} > 0 \) for some \( n_{ij} \ge 1 \) and \(
(P^{n_{ji}})_{ji} > 0 \) for some \( n_{ji} \ge 1 \).
Additionally since \( i \) and \( j \) communicate, \(
(P^{n_{ii}})_{ii} > 0 \) for some \( n_{ii} \).
\item
Then
\[
(P^{n_{ji} + n_{ii} + n_{ij}})_{jj} \ge (P^{n_{ji}})_
{ji} \cdot (P^{n_{ii}})_{ii} \cdot (P^{n_{ij}})_
{ij} > 0.
\] Furthermore, \( (P^{2n_{ii}})_{ii} > 0 \), so
\[
(P^{n_{ji} + 2n_{ii} + n_{ij}})_{jj} \ge (P^{n_{ji}})_
{ji} \cdot (P^{2n_{ii}})_{ii} \cdot (P^{n_{ij}})_
{ij} > 0.
\]
\item
This means that \( d(j) \) divides \( n_{ji} + n_{ii}
+ n_{ij} \) and \( d(j) \) divides \( n_{ji} + 2n_{ii}
+ n_{ij} \) so \( d(j) \) divides the difference \(
n_{ii} \).
\item
Now \( d(j) \) is a divisor of \( n_{ii} \) and \( d
(i) = \gcd(n_{ii}) \) so \( d(j) \le d(i) \).
\item
By a symmetrical arument, \( d(i) \le d(j) \) so \(
d(i) = d(j) \).
\end{enumerate}
\item
\begin{enumerate}
\item
For state \( i \), let its equivalence class of
communicating states be labeled \( 1, \dots, k \).
For each state \( j \), \( 1 \le j \le k \), there
is an \( m_{ij} \) such that \( (P^{m_{ij}})_{ij} >
0 \) and an \( m_{ji} \) such that \( (P^{m_{ji}})_{ji}
> 0 \).
\item
Let \( n_j = m_{ij} + m_{ji} \). Then
\[
(P^{n_j})_{ii} = (P^{m_{ij} + m_{ji}})_{ii} \ge
(P^{m_{ij}})_{ij } (P^{m_{ji}})_{ji} > 0.
\] That is, the probability of a return to \( i \)
from \( i \) in \( n_j \) steps is at least as great
as the probability of an excursion from \( i \) to \(
j \) in \( m_{ij} \) steps with return to \( i \)
from \( j \) in \( m_{ji} \) steps.
\item
Using the Markov property of independence of the
past and the future given the present state, \( (P^{n_j})_
{ii} > 0 \) implies that for any positive integer \(
c_j \), \( (P^{c_j n_j})_ {ii} > 0 \), that is, the
probability of \( c_j \) sequential returns is still
positive.
\item
By the number theoretic Lemma~%
\ref{lem:stationarydistributions:numtheory}, there
exists \( N \) and positive integers \( c_1, \dots,
c_k \) such that if \( n \ge N \)
\[
(P^{n d(i)})_{ii} = (P^{c_1 n_1 + \cdots + c_k n_k})_
{ii} \ge (P^{c_1 n_1})_{ii} \cdot \dots \cdot (P^
{c_k n_k})_{ii} >0.
\]
\end{enumerate}
\item
Using the hypothesis
\[
(P^{m + n d(i)})_{ji} \ge (P^{n d(i)})_{ii} (P^m)_{ji} >
0.
\] That is, the probability of an excursion to \( j \) from \(
i \) in \( m + n d(i) \) steps is at least as great as the
probability of an excursion from \( i \) to \( i \) in \( n
d(i) \) steps followed by moving to \( j \) from \( i \) in \(
m \) steps. By the previous part of the lemma, there is an \(
N \) such that for \( n \ge N \), \( (P^{n d(i)})_{ii} > 0 \)
and so \( (P^{m + n d(i)})_{ji} >0 \) for sufficiently large
\( n \).
\end{enumerate}
\end{proof}
\begin{definition}
The Markov chain is \defn{irreducible} if it has only one
communicating class.
\end{definition}
\index{irreducible}
\begin{definition}
A Markov chain in which each state has period \( 1 \) is \defn{aperiodic}.
\end{definition}
\index{aperiodic}
\subsection*{Recurrent and Transient States}
\begin{definition}
Let the random variable \( \tau_{ii} \) be the \defn{return time} to
state \( i \) given the chain starts in \( i \):
\begin{align*}
\tau_{ii} &= \min\setof{n \ge 1}{X_n = i \given X_0 = i} \\
\tau_{ii} &= \infty \text{ if } X_n \ne i, n \ge 1.
\end{align*}
\end{definition}
\index{return time}
\begin{definition}
Let the distribution of \( \tau_{ii} \) be \( f^n_{ii} \), be the
probability that starting from \( i \), the first return to state \(
i \) occurs at step \( n \). That is, for each \( n \ge 1 \),
\[
f^n_{ii} = \Prob{X_n = i, X_\nu \ne i, \nu =1,2,\dots,n-1 \given
X_0 = i}.
\] Note that \( f^1_{ii} = P_{ii} \) and recursively \( f^n_{ii} =
\sum_{\nu=0}^n f^{\nu}_{ii} P^{\nu-k}_{ii} \).
\end{definition}
\begin{definition}
The \defn{expected return time} is \( \E{\tau_{ii}} = m_i = \sum_{\nu=0}^
{\infty} \nu f^\nu_{ii} \).
\end{definition}
\begin{definition}
For any state \( i \), let \( f_i = \Prob{\tau_{ii} < \infty} \)
denote the probability that starting in \( i \) the process will
\emph{ever} reenter state \( i \). State \( i \) is \defn{recurrent}
if \( f_i = 1 \) and \defn{transient} if \( f_{i} < 1 \).
\end{definition}
\index{recurrent}
\index{transient}
\begin{remark}
Note that the qualities of recurrence and transience are
complementary, a state is one or the other, there are no other
possibilities. If the state \( i \) is transient, \( f_i < 1 \),
then \( i \) will be visited a finite random number of times.
Starting from \( i \) the number of visits \( N_i \) (counting the
starting visit) to transient state \( i \) has a geometric
distribution
\[
\Prob{N_i = n} = f_i^{n-1}(1 - f_i), n \ge 1.
\] This observation depends on the Strong Markov property, once the
chain visits state \( i \), the future is independent of the past
and the chain starts over again with the same distribution. In
fact, the expected number of visits is \( \E{N_i} = 1/(1 - f_i) \).
\end{remark}
\begin{proposition}
If state \( i \) is recurrent, then the process will reenter \( i \)
infinitely often.
\end{proposition}
\begin{proof}
\begin{enumerate}
\item
Suppose that the process starts in state \( i \) and \( i \)
is recurrent, so that with probability \( 1 \) the process
will eventually reenter state \( i \).
\item
However, by the definition of a Markov chain, it follows
that the process will be starting over again when it
reenters state \( i \), and therefore state \( i \) will
eventually be visited again.
\item
By induction, starting in state \( i \) will reenter state \(
i \) any number of times, that is, infinitely often.
\end{enumerate}
\end{proof}
\begin{proposition}
\begin{enumerate}
\item
State \( i \) is recurrent if
\[
\sum\limits_{\nu=1}^{\infty} (P^{\nu})_{ii} = \infty.
\]
\item
State \( i \) is transient if
\[
\sum\limits_{\nu=1}^{\infty} (P^\nu)_{ii} < \infty.
\]
\end{enumerate}
\end{proposition}
\index{recurrent}
\index{transient}
\begin{proof}
\begin{enumerate}
\item
The two statements are complementary and equivalent so it
suffices to prove the statement for transience.
\item
Suppose that state \( i \) is transient, so by definition \(
f_i <1 \). Let \( N_i \) count the total number of returns
to \( i \).
\item
Write \( N_i \) in terms of indicator variables as
\[
N_i = \sum\limits_{\nu=1}^{\infty} \indicatorrv{X_\nu=i}.
\]
\item
The distribution of \( N_i \) is geometric with parameter \(
f_i \) so
\[
\E{N_i \given X_0 = i} = \frac{f_i}{1 - f_i}.
\] Then
\[
\infty > \E{N_i \given X_0 = i} = \E{ \sum\limits_{n=1}^
{\infty} \indicatorrv{X_n=i \given X_0=i}} = \sum\limits_
{n=1}^{\infty} (P^n)_{ii}.
\]
\end{enumerate}
\end{proof}
\begin{corollary}
\label{cor:stationarydistributions:allrecurrent}
\begin{enumerate}
\item
For any communication class \( C \) of a Markov chain, all
states in \( C \) are either recurrent or all states in \( C
\) are transient. That is
\begin{itemize}
\item
if \( i \) and \( j \) communicate, and \( i \) is
recurrent, then so is \( j \)
\item
if \( i \) and \( j \) communicate, and \( i \) is
transient, then so is \( j \).
\end{itemize}
\item
For an irreducible Markov chain, either all states are
recurrent or all states are transient.
\end{enumerate}
\end{corollary}
\begin{proof}
Left as an exercise.
\end{proof}
\subsection*{Positive Recurrence}
\begin{definition}
A state \( i \) is \defn{positive recurrent} if it is recurrent and
starting in \( i \), the expected time until the process returns to
state \( i \) is finite. Otherwise the state is \defn{null
recurrent}.
\end{definition}
\index{positive recurrent}
\index{null recurrent}
\begin{proposition}
Suppose states \( i,j \) are both recurrent. If \( i \) and \( j \)
communicate and if \( j \) is positive recurrent, \( \E{\tau_{jj}} <
\infty \), then \( i \) is positive recurrent and furthermore \( \E{\tau_
{ij}} < \infty \). In particular, all states in a recurrent
communicating class are either all together positive recurrent or
all together null recurrent.
\end{proposition}
\begin{proof}
\begin{enumerate}
\item
Assume \( \E{\tau_{jj}} < \infty \) and \( i \) and \( j \)
communicate.
\item
Choose the smallest \( n \ge 1 \) such that \( (P^n)_{ji} >
0 \).
\item
\label{enum:stationarydistributions:defA} With \( x_0 = j \),
let \( A = \set{x_l \ne j, 1 \le l < n, x_n = i} \) be the
path of states visited to \( i \). Note that \( \Prob{A} >
0 \).
\item
Then \( \E{\tau_{jj}} \ge \E{\tau_{jj} \given A} \cdot \Prob
{A} = (n + \E{\tau_{ij}}) \cdot \Prob{A} \). Hence \( \E{\tau_
{ij}} < \infty \).
\item
With \( x_0 = j \), let \( \setof{Y_m}{m \ge 1} \) be the
interarrival time between visits to state \( j \). The
distribution of \( Y_m \) is the same as the distribution of
\( \tau_{jj} \). The \( n \)th revisit of the chain to
state \( j \) is at time \( t_n = Y_1 + \cdots + Y_n \) with
\( \E{Y_{l}} = \E{\tau_{jj}} < \infty \).
\item
Let \( p \) be the probability the chain visits state \( i \)
before returning to state \( j \), given that the chain
started in \( j \). Then \( p \ge \Prob{A} > 0 \) where \(
A \) is defined in step~%
\ref{enum:stationarydistributions:defA}.
\item
Every time the chain revisits state \( j \), there is,
independent of the past, this probability \( p \) that the
chain will visit state \( i \) before revisiting state \( j \)
again. Letting \( N \) denote the number of revisits the
chain makes to state \( j \) until first visiting state \( i
\), \( N \) has geometric distribution with ``success''
probability \( p \) and so \( \E{N} < \infty \).
\item
\( N \) is a stopping time with respect to the \( \set{Y_m} \)
and
\[
\tau_{ji} \le \sum\limits_{m=1}^N Y_m
\] and so by Wald's equation \( \E{\tau_{ji}} \le \E{N}
\cdot \E{Y} < \infty \).
\item
Finally, \( \E{\tau_{ii}} \le \E{\tau_{ij}} + \E{\tau_{ji}}
< \infty \).
\end{enumerate}
\end{proof}
\begin{proposition}
In an irreducible finite-state Markov chain all recurrent states are
positive recurrent and has a stationary distribution satisfying \(
\pi = P \pi \).
\end{proposition}
\begin{proof}
\begin{enumerate}
\item
If the state space is finite, then not \emph{all} states can
be transient. Otherwise, after a finite number of steps,
the chain would leave every state never to return, clearly
an impossibility. That is, all the communicating states are
recurrent.
\item
Now show that state \( i \) can't be null recurrent, that
is, it must be positive recurrent.
\item
For any fixed \( m \ge 1 \), the rows of \( P^m \) must sum
to \( 1 \). That is, for any \( i \in \mathcal{X} \)
\[
\sum\limits_{j \in \mathcal{X}} (P^m)_{ij} = 1.
\]
\item
If the state is null recurrent, then for any \( j \in
\mathcal{X} \).
\[
\lim_{n \to \infty} \frac{1}{n} \sum\limits_{\nu=1}^n (P^\nu)_
{ij} = 0.
\]
\item
Summing over \( j \)
\[
\sum\limits_{j \in \mathcal{X}} \lim_{n \to \infty}
\frac{1}{n} \sum\limits_{\nu=1}^{n} (P^\nu)_{ij} = 0.
\]
\item
Since the state space is finite, interchange the outer sum
and the limit.
\[
\lim_{n \to \infty} \sum\limits_{j \in \mathcal{X}}
\frac{1}{n} \sum\limits_{\nu=1}^{n} (P^\nu)_{ij} = 0.
\]
\item
Interchange the order of summation,
\[
\lim_{n \to \infty} \frac{1}{n} \sum\limits_{\nu=1}^{n}
\sum\limits_{j \in \mathcal{X}} (P^\nu)_{ij} = 0.
\]
\item
But
\[
\lim_{n \to \infty} \frac{1}{n} \sum\limits_{\nu=1}^{n}
\sum\limits_{j \in \mathcal{X}} (P^\nu)_{ij} = \lim_{n
\to \infty} \frac{1}{n}\lim_{n \to \infty} \frac{1}{n}
\sum\limits_{\nu=1}^{n} \sum\limits_{j \in \mathcal{X}}
(P^\nu)_{ij} \sum\limits_{\nu=1}^{n} 1 = \lim_{n \to
\infty} \frac{1}{n} \cdot n = 1,
\] a contradiction.
\item
Thus, the state must be positive recurrent.
\end{enumerate}
\end{proof}
\begin{definition}
Positive recurrent and aperiodic states are \defn{ergodic}.
\end{definition}
\index{ergodic}
\begin{example}
In infinite state space Markov chains recurrence, transience,
positive recurrence and null recurrence are distinct. Symmetric
nearest neighbor random walk on \( \Integers \) and \( \Integers^2 \)
is null recurrent. However symmetric nearest neighbor random walk
on \( \Integers^N \) is transient. See
\cite[Chapter 13]{lesigne05}
\end{example}
\subsection*{Fundamental Theorems}
\begin{remark}
Make the notation convention that \( (P^{0})_{ii} = 1 \). Define
the \defn{expected return time} as \( m_i = \sum_ {\nu=0}^ {\infty}
\nu f^\nu_{ii} \).
\end{remark}
\begin{definition}
When the limit exists, let
\[
\pi_j = \lim_{n \to \infty} \frac{1}{n} \sum\limits_{\nu=1}^n
\indicatorrv{X_{\nu}= j \given X_0 = i}
\] denote the \defn{long run proportion of time the chain spends in
state \( j \)} or just the \emph{long run proportion} for short.
Note that the right side appears to depend on the starting state \(
i \), but the theorems below show that the long run proportion is
independent of \( i \).
\end{definition}
\index{long run proportion}
\begin{theorem}[Limit Theorem for Markov Chain Powers]
For an irreducible, positive recurrent and aperiodic Markov chain,
\begin{enumerate}
\item
\[
\lim_{n \to \infty} (P^{n})_{ii} = \frac{1}{m_i},
\] and
\item
\[
\lim_{n \to \infty} (P^{n})_{ij} = \lim_{n \to \infty} (P^
{n})_{ii}.
\]
\end{enumerate}
\end{theorem}
\index{Limit Theorem for Markov Chain Powers}
\begin{proof}
\begin{enumerate}
\item
Start with the recursion relation
\[
(P^n)_{ji} = \sum\limits_{\nu=0}^n f^{\nu}_{ji} (P^{n-\nu})_
{ii}
\] for \( i \ne j \) and \( n \ge 0 \).
\item
Change the order of summation
\[
(P^n)_{ji} = \sum\limits_{\nu=0}^n f^{n-\nu}_{ji} (P^{\nu})_
{ii}
\] for \( i \ne j \) and \( n \ge 0 \).
\item
More generally, consider the convolution type relation
\[
y_n = \sum\limits_{\nu=0}^n a_{n-\nu} x_{\nu}
\] where \( a_m \ge 0 \), \( \sum_{\nu=0}^{\infty} a_\nu = 1
\), and \( \lim_{\nu \to \infty} x_\nu = c \). The goal is
to prove that \( \lim_{\nu \to \infty} y_\nu = c \).
\item
Taking the difference with \( c \) and break into sums from \(
0 \) to \( n \) and \( n+1 \) to \( \infty \)
\[
y_n - c = \sum\limits_{\nu=0}^n a_{n-\nu} x_\nu -c \sum\limits_
{\nu=0}^{\infty} a_n = \sum\limits_{\nu=0}^n a_{n-\nu} (x_k
-c) - c \sum\limits_{\nu=n+1}^{\infty} a_\nu.
\]
\item
Let \( \epsilon > 0 \) be given and determine \( N(\epsilon)
\) so that\( \abs{x_{\nu} - c} < \epsilon/3 \) for \( \nu
\ge N(\epsilon) \). For \( \nu \ge N(\epsilon) \)
\[
y_n - c = \sum\limits_{\nu=0}^{N(\epsilon)} a_{n-\nu} (x_k
-c) + \sum\limits_{\nu=N(\epsilon)+1}^n a_{n-\nu} (x_k
-c)- c \sum\limits_{\nu=n+1}^{\infty} a_\nu.
\] Then
\[
\abs{y_n - c} \le M \sum\limits_{\nu=0}^{N(\epsilon)} a_
{n-\nu} + \frac{\epsilon}{3} \sum\limits_{\nu=N(\epsilon)+1}^n
a_{n-\nu} + \abs{c} \sum\limits_{\nu=n+1}^{\infty} a_\nu.
\]
\item
Choose \( N(\epsilon) \) so that \( \abs{c} \sum_{\nu=n+1}^
{\infty} a_\nu \le \epsilon/3 \) and
\[
\sum\limits_{\nu=0}^{N(\epsilon)} a_{n-\nu} = \sum\limits_
{\nu=n-N (\epsilon)}^n a_{\nu} \le \frac{\epsilon}{3M}
\] for \( n \ge N(\epsilon) \).
\item
Summarizing, for \( n \ge N(\epsilon) \), \( \abs{y-c} \le
\epsilon/3 + \epsilon/3 + \epsilon/3 = \epsilon \).
\item
Applying this to \( y_n = (P^n)_{ji} \), \( a_n = f^n_{ji} \),
\( x_n = (P^n)_{ii} \) gives the final result.
\end{enumerate}
\end{proof}
\begin{remark}
This proof is a purely analytic result with the probabilistic
application due to the assumption that \( \sum_{\nu=0}^{\infty} a_\nu
= 1 \).
\end{remark}
\begin{lemma}
If \( a_n \to a \) as \( n \to \infty \), then
\[
\lim_{n \to \infty} \frac{1}{n} \sum\limits_{\nu=1}^{n} a_{\nu}
= a,
\] so that if \( a_n \) converges to \( a \), the sequence of
averages converges to \( a \).
\end{lemma}
\begin{proof}
Left as an exercise.
\end{proof}
\begin{corollary}
\[
\lim_{n \to \infty} (P^{n})_{ii} = \frac{1}{\sum\limits_{\nu=0}^
{\infty} \nu f^{\nu}_{ii}} = \frac{1}{m_i},
\]
\end{corollary}
\begin{remark}
Taking expected values,
\[
\E{\indicatorrv{X_m = j \given X_0 = i}} = \Prob{X_m = j \given
X_0 = i} = (P^m)_{ij}
\] so the long run proportion is alternatively defined as
\[
\pi_j = \lim_{n \to \infty} \frac{1}{n} \sum\limits_{\nu=1}^n (P^
{\nu})_ {ij}
\] using the Bounded Convergence Theorem to interchange the limit
and the expectation.
\end{remark}
\begin{remark}
Recalling that \( (P^{\nu})_{ij} \) is the \( i,j \) component of
the matrix \( P^{\nu} \) and using the independence on \( i \), the
long run proportions in matrix form are
\[
\lim_{n \to \infty} \frac{1}{n} \sum\limits_{\nu=1}^n P^{\nu} =
\begin{pmatrix}
\pi_1 & \pi_2 & \ldots & \pi_k \\
\pi_1 & \pi_2 & \ldots & \pi_k \\
\vdots & \vdots & \ddots & \vdots \\
\pi_1 & \pi_2 & \ldots & \pi_k \\
\end{pmatrix}
=
\begin{pmatrix}
\pi \\
\pi \\
\vdots \\
\pi
\end{pmatrix}
.
\]
\end{remark}
\begin{remark}
Observing the Markov chain at a time far in the future, \( \pi_j \)
is approximately the probability the chain is in state \( j \). To
see this: Let \( N \) be a random observation time, with uniform
distribution over the integers \( \set{1, 2, \dots, n} \),
independent of the chain. Then conditioning on \( N \)
\[
\Prob{X_N = j} = \sum\limits_{\nu=1}^n \Prob{X_{\nu} = j \given
X_0 = i} \Prob{N = m} = \frac{1}{n} \sum\limits_{\nu=1}^n (P^{\nu})_
{ij} \approx \pi_j.
\]
\end{remark}
\begin{theorem}[Fundamental Theorem of Markov Chains]
For an irreducible, positive recurrent and aperiodic Markov chain \(
\lim_{n \to \infty} (P^n)_{ij} \) exists and is independent of \( i \).
Furthermore, letting
\[
\pi_j = \lim_{n \to \infty} (P^n)_{ij}
\] then \( \pi_j \) is the unique non-negative solution of
\begin{align}
\sum\limits_{i} \pi_{i} P_{ij} &= \pi_{j},%
\label{eq:stationarydistributions:FTMC1}\\
\sum\limits_{i} \pi_{i} &= 1.%
\label{eq:stationarydistributions:FTMC2}
\end{align}
\end{theorem}
\index{Fundamental Theorem of Markov Chains}
\begin{proof}
\begin{enumerate}
\item
For every \( n \) and \( M \), \( 1 = \sum_{j=0}^{\infty} (P^n)_
{ij} \ge \sum_{j=0}^M (P^n)_{ij} \).
\item
Letting \( n \to \infty \), the limit exists, and using the
Limit Theorem for Markov Chain Powers, \( 1 \ge \sum_{j=0}^{M}
\pi_j \) for every \( M \). Thus, \( 1 \ge \sum_{j=0}^{\infty}
\pi_j \).
\item
Now \( (P^{n+1})_{ij} \ge \sum_{\nu=0}^M (P^n)_{i \nu}P_{\nu
j} \). Again let \( n \to \infty \) to obtain
\[
\pi_j \ge \sum\limits_{\nu=0}^M \pi_{\nu} P_{\nu j}.
\]
\item
Since the left side is independent of \( M \), let \( M \to
\infty \) giving
\[
\pi_j \ge \sum\limits_{\nu=0}^\infty \pi_\nu P_{\nu j}.
\]
\item
Multiply by \( P_{ji} \), sum on \( j \)
\[
\pi_i \ge \sum\limits_{\nu=0}^\infty \pi_{\nu} (P^2)_{\nu
i}
\] and then by induction and renaming the state index from \(
i \) back to \( j \)
\[
\pi_j \ge \sum\limits_{\nu=0}^\infty \pi_\nu (P^n)_{\nu
j}.
\]
\item
In the previous inequality, suppose strict inequality holds
for some \( j \), then add over \( j \)
\[
\sum\limits_{j=0}^{\infty} \pi_j > \sum\limits_{j=0}^{\infty}
\sum\limits_{\nu=0}^{\infty} \pi_{\nu} (P^n)_{\nu j} =
\sum\limits_ {\nu=0}^{\infty} \pi_\nu \sum\limits_{j=0}^
{\infty}(P^n)_{\nu j} = \sum\limits_{j=0}^{\infty} \pi_j
\] which is a contradiction. Thus
\[
\pi_j = \sum\limits_{\nu=0}^\infty \pi_\nu (P^n)_{\nu j}.
\]
\item
Let \( n \to \infty \), and use that \( \sum \pi_{\nu} \)
converges and \( (P^n)_{\nu j} \) is uniformly bounded to
conclude
\[
\pi_j = \sum\limits_{\nu=0}^{\infty} \pi_\nu \lim_{\nu
\to \infty} (P^n)_{vj} = \pi_j \sum\limits_{\nu=0}^{\infty}
\pi_{\nu}
\] for every \( j \). Thus \( \sum\limits_{\nu=0}^{\infty}
\pi_{\nu} = 1 \) since \( \pi_j > 0 \) by positive
recurrence.
\item
Now suppose \( x = \{x_n\} \) satisfies the stationary
distribution relations. Then as before
\[
x_j \ge \sum\limits_{\nu=0}^\infty x_\nu (P^n)_{\nu j}.
\] Let \( n \to \infty \) as before to see that
\[
x_j = \sum\limits_{\nu =0}^{\infty} x_{\nu} (P^n)_{\nu j}
= \pi_k \sum\limits_{\nu=0}^{\infty} x_j = \pi_k.
\]
\end{enumerate}
\end{proof}
\begin{definition}
Any vector \( (\pi_j) \) satisfying equations~%
\ref{eq:stationarydistributions:FTMC1} and~%