-
Notifications
You must be signed in to change notification settings - Fork 0
/
alexnet.py
190 lines (140 loc) · 7.36 KB
/
alexnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import tensorflow as tf
import numpy as np
class AlexNet(object):
def __init__(self, x, keep_prob, skip_layer, weights_path='DEFAULT', n_class=3):
# Parse input arguments into class variables
self.X = x
self.KEEP_PROB = keep_prob
self.SKIP_LAYER = skip_layer
self.NUM_CLASSES = n_class
if weights_path == 'DEFAULT':
self.WEIGHTS_PATH = 'bvlc_alexnet.npy'
else:
self.WEIGHTS_PATH = weights_path
# Call the create function to build the computational graph of AlexNet
self.create()
def create(self):
# 1st Layer: Conv (w ReLu) -> Pool -> Lrn
conv1 = conv(self.X, 11, 11, 96, 4, 4, padding='VALID', name='conv1')
pool1 = max_pool(conv1, 3, 3, 2, 2, padding='VALID', name='pool1')
norm1 = lrn(pool1, 2, 2e-05, 0.75, name='norm1')
# 2nd Layer: Conv (w ReLu) -> Pool -> Lrn with 2 groups
conv2 = conv(norm1, 5, 5, 256, 1, 1, groups=2, name='conv2')
pool2 = max_pool(conv2, 3, 3, 2, 2, padding='VALID', name='pool2')
norm2 = lrn(pool2, 2, 2e-05, 0.75, name='norm2')
# 3rd Layer: Conv (w ReLu)
conv3 = conv(norm2, 3, 3, 384, 1, 1, name='conv3')
# 4th Layer: Conv (w ReLu) splitted into two groups
conv4 = conv(conv3, 3, 3, 384, 1, 1, groups=2, name='conv4')
# 5th Layer: Conv (w ReLu) -> Pool splitted into two groups
conv5 = conv(conv4, 3, 3, 256, 1, 1, groups=2, name='conv5')
pool5 = max_pool(conv5, 3, 3, 2, 2, padding='VALID', name='pool5')
# 6th Layer: Flatten -> FC (w ReLu) -> Dropout
flattened = tf.reshape(pool5, [-1, 6*6*256])
fc6 = fc(flattened, 6*6*256, 4096, name='fc6')
dropout6 = dropout(fc6, self.KEEP_PROB)
# 7th Layer: FC (w ReLu) -> Dropout
fc7 = fc(dropout6, 4096, 4096, name='fc7')
dropout7 = dropout(fc7, self.KEEP_PROB)
# 8th Layer: FC and return unscaled activations (for tf.nn.softmax_cross_entropy_with_logits)
if self.NUM_CLASSES == 0:
self.fc8 = my_fc(dropout7, 4096, name='fc8')
else:
self.fc8 = fc(dropout7, 4096, self.NUM_CLASSES, relu=False, name='fc8')
def load_my_weights(self, w_dir, session):
weights_dict = np.load(w_dir, encoding="bytes").item()
for op_name in weights_dict:
if op_name not in self.SKIP_LAYER:
with tf.variable_scope(op_name, reuse=True):
for data in weights_dict[op_name]:
numbers = weights_dict[op_name][data]
if data == b"biases":
var = tf.get_variable('biases', trainable=False)
session.run(var.assign(numbers))
else:
var = tf.get_variable('weights', trainable=False)
session.run(var.assign(numbers))
def load_initial_weights(self, session):
"""
As the weights from http://www.cs.toronto.edu/~guerzhoy/tf_alexnet/ come
as a dict of lists (e.g. weights['conv1'] is a list) and not as dict of
dicts (e.g. weights['conv1'] is a dict with keys 'weights' & 'biases') we
need a special load function
"""
# Load the weights into memory
weights_dict = np.load(self.WEIGHTS_PATH, encoding='latin1').item()
# Loop over all layer names stored in the weights dict
for op_name in weights_dict:
# Check if the layer is one of the layers that should be reinitialized
if op_name not in self.SKIP_LAYER:
with tf.variable_scope(op_name, reuse=True):
# Loop over list of weights/biases and assign them to their corresponding tf variable
for data in weights_dict[op_name]:
# Biases
if len(data.shape) == 1:
var = tf.get_variable('biases', trainable=False)
session.run(var.assign(data))
# Weights
else:
var = tf.get_variable('weights', trainable=False)
session.run(var.assign(data))
# Predefine all necessary layer for the AlexNet
def conv(x, filter_height, filter_width, num_filters, stride_y, stride_x, name,
padding='SAME', groups=1):
# Get number of input channels
input_channels = int(x.get_shape()[-1])
# Create lambda function for the convolution
convolve = lambda i, k: tf.nn.conv2d(i, k,
strides=[1, stride_y, stride_x, 1],
padding=padding)
with tf.variable_scope(name) as scope:
# Create tf variables for the weights and biases of the conv layer
weights = tf.get_variable('weights', shape=[filter_height, filter_width, input_channels/groups, num_filters])
biases = tf.get_variable('biases', shape=[num_filters])
if groups == 1:
conv = convolve(x, weights)
# In the cases of multiple groups, split inputs & weights and
else:
# Split input and weights and convolve them separately
input_groups = tf.split(axis=3, num_or_size_splits=groups, value=x)
weight_groups = tf.split(axis=3, num_or_size_splits=groups, value=weights)
output_groups = [convolve(i, k) for i, k in zip(input_groups, weight_groups)]
# Concat the convolved output together again
conv = tf.concat(axis=3, values=output_groups)
# Add biases
bias = tf.reshape(tf.nn.bias_add(conv, biases), conv.get_shape().as_list())
# Apply relu function
relu = tf.nn.relu(bias, name=scope.name)
return relu
# 最后一层输出改为概率
def my_fc(x, num_in, name):
with tf.variable_scope(name) as scope:
# Create tf variables for the weights and biases
num_out = 1 # 只输出一个概率
weights = tf.get_variable('weights', shape=[num_in, num_out], trainable=True)
biases = tf.get_variable('biases', [num_out], trainable=True)
# Matrix multiply weights and inputs and add bias
act = tf.nn.xw_plus_b(x, weights, biases, name=scope.name)
return tf.nn.sigmoid(act)
def fc(x, num_in, num_out, name, relu=True):
with tf.variable_scope(name) as scope:
# Create tf variables for the weights and biases
weights = tf.get_variable('weights', shape=[num_in, num_out], trainable=True)
biases = tf.get_variable('biases', [num_out], trainable=True)
# Matrix multiply weights and inputs and add bias
act = tf.nn.xw_plus_b(x, weights, biases, name=scope.name)
if relu:
# Apply ReLu non linearity
relu = tf.nn.relu(act)
return relu
else:
return act
def max_pool(x, filter_height, filter_width, stride_y, stride_x, name, padding='SAME'):
return tf.nn.max_pool(x, ksize=[1, filter_height, filter_width, 1],
strides=[1, stride_y, stride_x, 1],
padding=padding, name=name)
def lrn(x, radius, alpha, beta, name, bias=1.0):
return tf.nn.local_response_normalization(x, depth_radius=radius, alpha=alpha,
beta=beta, bias=bias, name=name)
def dropout(x, keep_prob):
return tf.nn.dropout(x, keep_prob)