forked from Seanny123/DeepSLAM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfilter_boost.py
135 lines (109 loc) · 4.29 KB
/
filter_boost.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import numpy as np
import h5py
import scipy.sparse
import scipy.io
from constants import *
import ipdb
import os
import pickle
# frame length, which also dictates the delay being frame capture and feedback
# because of forward_fit
# which isn't even in the report...
flen = DEE
flen_2 = 3
dt = EPSILON
st = 0.75 #kind of equivalent to sigma
"""
import sys
from IPython.core import ultratb
sys.excepthook = ultratb.FormattedTB(mode='Verbose',
color_scheme='Linux', call_pdb=1)
"""
res_dict = {}
ground_truth = scipy.io.loadmat('GroundTruth_Eynsham_40meters.mat')['ground_truth']
for fname in os.listdir("good"):
### Get matches from confusion matrix ###
# load the confusion matrix
dname = "dataset"
print("opening file %s" %fname)
h5f = h5py.File("good/"+fname, 'r')
conf_matrix = h5f[dname][:]
h5f.close()
print("procesing layer")
# grab the testing matrix from the confusion matrix
test_matrix = conf_matrix[0:4789, 4789:9575]
# the min score is the best match
b = np.argmin(test_matrix, axis=0)
# Percentage of top matches used in the vibration calculation, allows the occasional outlier
inlier_fraction = 5/6.0
matches = np.zeros(int(b.size - flen + flen_2))
stable_count = 0
# WHY NOT FILTER AROUND? Change to get same results but neater?
for i in range(0, b.size - flen):
match_index = int(i + flen_2)
# Check that the match being considered is continous with those around it
vibrations = np.abs( np.diff(b[i:i + flen]) )
sorted_vib = np.sort(vibrations)
max_diff = np.max(sorted_vib[ 0 : int(np.round(inlier_fraction * flen)) ])
stable = max_diff <= dt
# linear regression to get slope of fit
pt = np.polyfit( np.arange(0, flen), b[i:i + flen], 1)
# This is the slope, because highest powers first
velocity = pt[0]
# forward match with a tolerance of -1 and +1
# absolute value to check going forwards or backwards
forward_match = np.abs(velocity - 1) < st or np.abs(velocity + 1) < st
if stable and forward_match:
# smooth the value based off of those around it
matches[match_index] = pt[1] + pt[0] * 0.5 * flen
for j in range(1, flen_2 + 1):
back_chk = match_index - j
front_chk = match_index + j
# fill in the zero (default) values if possible
if matches[back_chk] == 0:
matches[back_chk] = b[back_chk]
# fill in base values for future vals
if front_chk < 4783:
matches[front_chk] = b[front_chk]
### Compare to ground truth ###
print("zeros")
print(np.where(matches == 0)[0].size)
print("comparing to ground truth")
start_first = 1
end_first = 4788
len_first = end_first - start_first + 1
start_second = 4789
end_second = 9574
len_second = end_second - start_second + 1
half_matrix = 4785
ground_matrix = np.zeros((len_second, len_first))
tp_num = 0
tp_value = []
fp_num = 0
fp_value = []
for ground_idx in range(start_second, end_second):
value_ground = ground_truth[ground_idx, :]
value_fit = value_ground.toarray().flatten().nonzero()[0]
# only store those in first round
value_fit2 = value_fit[ np.where(value_fit < end_first)[0].astype(int) ]
value_fit3 = value_fit2 - start_first + 1
value_fit4 = value_fit3[ np.where(value_fit3 > 0)[0].astype(int) ]
matrix_idx = ground_idx - start_second + 1
ground_matrix[matrix_idx, value_fit4] = 1
for truth_idx in range(0, matches.size):
ground_row = ground_truth[truth_idx+end_first, :]
ground_row_idx = ground_row.toarray().flatten().nonzero()[0]
if matches[truth_idx] != 0:
truth_va = np.round(matches[truth_idx])
if np.any(ground_row_idx == np.round(truth_va)):
tp_num = tp_num + 1
tp_value = [tp_value, truth_idx]
else:
fp_num = fp_num + 1
fp_value = [fp_value, truth_idx]
precision = tp_num / float(tp_num + fp_num)
print(precision)
recall = tp_num / float(b.size)
print(recall)
res_dict[fname] = (precision, recall)
pickle.dump(res_dict, open("filter_res.p", "wb"))