-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsentiment.py
175 lines (131 loc) · 4.94 KB
/
sentiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import pandas as pd
from sklearn.utils import shuffle
df = pd.read_csv('drive/My Drive/dataset/training.1600000.processed.noemoticon.csv',encoding="ISO-8859-1")
df = df.iloc[:,[5,0]]
df = shuffle(df)
df.columns = ['tweet','sentiment']
import numpy as np
dataset = df.iloc[:150000,:]
print(np.shape(dataset))
df1 = df.tail(150000)
print(np.shape(df1))
dataset = dataset.append(df1,ignore_index=True)
print(np.shape(dataset))
print(dataset.head())
print(dataset.tail())
import re
import numpy as np
def remove_pattern(input_txt, pattern):
r = re.findall(pattern, input_txt)
for i in r:
input_txt = re.sub(i, '', input_txt)
return input_txt
import re
import numpy as np
def remove_pattern(input_txt, pattern):
r = re.findall(pattern, input_txt)
for i in r:
input_txt = re.sub(i, '', input_txt)
return input_txt
dataset['tidy_tweet'] = dataset['tidy_tweet'].str.replace("[^a-zA-Z#]", " ")
dataset['tidy_tweet'].head()
dataset['tidy_tweet'] = dataset['tidy_tweet'].apply(lambda x: ' '.join([w for w in x.split() if len(w)>3]))
dataset['tidy_tweet'].head()
dataset['tidy_tweet'] = dataset['tidy_tweet'].str.lower()
dataset['tidy_tweet'].head()
tokenized_tweet = dataset['tidy_tweet'].apply(lambda x: x.split())
tokenized_tweet.head()
from nltk.stem.porter import *
stemmer = PorterStemmer()
tokenized_tweet = tokenized_tweet.apply(lambda x: [stemmer.stem(i) for i in x]) # stemming
tokenized_tweet.head()
for i in range(len(tokenized_tweet)):
tokenized_tweet[i] = ' '.join(tokenized_tweet[i])
dataset['tidy_tweet'] = tokenized_tweet
import matplotlib.pyplot as plt
all_words = ' '.join([text for text in dataset['tidy_tweet']])
from wordcloud import WordCloud
wordcloud = WordCloud(width=800, height=500, random_state=21, max_font_size=110).generate(all_words)
plt.figure(figsize=(10, 7))
plt.imshow(wordcloud, interpolation="bilinear")
plt.axis('off')
plt.show()
positive_words =' '.join([text for text in dataset['tidy_tweet'][dataset['sentiment'] == 4]])
wordcloud = WordCloud(width=800, height=500, random_state=21, max_font_size=110).generate(positive_words)
plt.figure(figsize=(10, 7))
plt.imshow(wordcloud, interpolation="bilinear")
plt.axis('off')
plt.show()
negative_words = ' '.join([text for text in dataset['tidy_tweet'][dataset['sentiment'] == 0]])
wordcloud = WordCloud(width=800, height=500,
random_state=21, max_font_size=110).generate(negative_words)
plt.figure(figsize=(10, 7))
plt.imshow(wordcloud, interpolation="bilinear")
plt.axis('off')
plt.show()
# function to collect hashtags
def hashtag_extract(x):
hashtags = []
# Loop over the words in the tweet
for i in x:
ht = re.findall(r"#(\w+)", i)
hashtags.append(ht)
return hashtags
HT_regular = hashtag_extract(dataset['tidy_tweet'][dataset['sentiment'] == 4])
HT_negative = hashtag_extract(dataset['tidy_tweet'][dataset['sentiment'] == 0])
# unnesting list
HT_regular = sum(HT_regular,[])
HT_negative = sum(HT_negative,[])
import nltk
import seaborn as sns
import matplotlib as plt
a = nltk.FreqDist(HT_regular)
d = pd.DataFrame({'Hashtag': list(a.keys()),
'Count': list(a.values())})
# selecting top 10 most frequent hashtags
d = d.nlargest(columns="Count", n = 10)
plt.figure(figsize=(16,5))
ax = sns.barplot(data=d, x= "Hashtag", y = "Count")
plt.show()
b = nltk.FreqDist(HT_negative)
e = pd.DataFrame({'Hashtag': list(b.keys()), 'Count': list(b.values())})
# selecting top 10 most frequent hashtags
e = e.nlargest(columns="Count", n = 10)
plt.figure(figsize=(16,5))
ax = sns.barplot(data=e, x= "Hashtag", y = "Count")
plt.show()
from sklearn.feature_extraction.text import CountVectorizer
bow_vectorizer = CountVectorizer(max_df=0.90, min_df=1, max_features=6000, stop_words='english')
# bag-of-words feature matrix
bow = bow_vectorizer.fit_transform(dataset['tidy_tweet'])
print(bow.toarray()[0:5])
print(bow_vectorizer.get_feature_names()[0:20])
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix
# splitting data into training and test set
xtrain_bow, xtest_bow, ytrain, ytest = train_test_split(bow, dataset['sentiment'], random_state=42, test_size=0.3)
lreg = LogisticRegression()
lreg.fit(xtrain_bow, ytrain) # training the model
model = lreg
prediction = lreg.predict(xtest_bow)
cm = confusion_matrix(ytest,prediction)
print(cm)
accuracy = ((cm[0][0]+cm[1][1])/(sum(sum(cm))))*100
print("accuracy = ",accuracy)
text = "what an amazing & fantastic day today"
text = text.split()
bow_real = bow_vectorizer.fit(text)
print(bow_real.toarray()[0:5])
prediction = lreg.predict(bow_real)
from sklearn.externals import joblib
filename = 'finalized_model.sav'
joblib.dump(model, filename)
# load the model from disk
# loaded_model = joblib.load(filename)
# result = loaded_model.score(X_test, Y_test)
# print(result)
def predictAnalysis(realTweets):
loaded_model = joblib.load(filename)
result = loaded_model.predict(realTweets)
return result