-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathAutomating_account_payables
97 lines (80 loc) · 3.24 KB
/
Automating_account_payables
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import pandas as pd
from sklearn.ensemble import RandomForestClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import LocalOutlierFactor
# Function to extract data from a bill image
def extract_data(bill_image):
# Add code to extract data from the bill image and return it as a dictionary
extracted_data = {
'vendor': 'Vendor Name',
'amount': 100.0,
'date': '2023-05-15',
'purchase_order_number': 'PO12345',
# Add more fields as per your requirements
}
return extracted_data
# Function to predict fields in a bill
def predict_fields(bill_data):
# Add code to predict various fields in the bill using a machine learning model
predicted_fields = {
'vendor': 'Predicted Vendor Name',
'amount': 110.0,
'date': '2023-05-15',
'purchase_order_number': 'Predicted PO12345',
# Add more predicted fields as per your requirements
}
return predicted_fields
# Function to detect anomalies in a bill
def detect_anomalies(bill_data):
# Add code to detect anomalies in the bill data using anomaly detection algorithms
anomaly_scores = {
'vendor': 0.1,
'amount': -1.2,
'date': 0.5,
'purchase_order_number': 0.8,
# Add more anomaly scores for other fields as per your requirements
}
return anomaly_scores
# Function to match the bill to an existing purchase order
def match_purchase_order(bill_data):
# Add code to match the bill to an existing purchase order in your ERP system
purchase_order_status = 'Matched'
return purchase_order_status
# Function to pay a bill
def pay_bill(bill_data):
# Add code to process the bill payment and update payment status in the ERP accounting system
payment_status = 'Paid'
return payment_status
# Function to reconcile the payment of a bill with a bank transaction
def reconcile_payment(bill_data, bank_transaction_data):
# Add code to reconcile the payment of the bill with the bank transaction data
reconciliation_status = 'Reconciled'
return reconciliation_status
# Main program
def main():
# Load the bill image
bill_image = 'bill_image.jpg'
# Extract data from the bill image
extracted_data = extract_data(bill_image)
# Predict various fields in the bill
predicted_fields = predict_fields(extracted_data)
# Detect anomalies in the bill
anomaly_scores = detect_anomalies(predicted_fields)
# Match the bill to an existing purchase order
purchase_order_status = match_purchase_order(predicted_fields)
# Pay the bill
payment_status = pay_bill(predicted_fields)
# Load bank transaction data
bank_transaction_data = pd.read_csv('bank_transaction_data.csv')
# Reconcile the payment of the bill with the bank transaction
reconciliation_status = reconcile_payment(predicted_fields, bank_transaction_data)
# Print the results
print("Extracted Data:", extracted_data)
print("Predicted Fields:", predicted_fields)
print("Anomaly Scores:", anomaly_scores)
print("Purchase Order Status:", purchase_order_status)
print("Payment Status:", payment_status)
print("Reconciliation Status:", reconciliation_status)
# Run the program
if __name__ == '__main__':
main()