-
Notifications
You must be signed in to change notification settings - Fork 5
/
bresenham_line3d.m
189 lines (162 loc) · 4.57 KB
/
bresenham_line3d.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
% Generate X Y Z coordinates of a 3D Bresenham's line between
% two given points.
%
% A very useful application of this algorithm can be found in the
% implementation of Fischer's Bresenham interpolation method in my
% another program that can rotate three dimensional image volume
% with an affine matrix:
% http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=21080
%
% Usage: [X Y Z] = bresenham_line3d(P1, P2, [precision]);
%
% P1 - vector for Point1, where P1 = [x1 y1 z1]
%
% P2 - vector for Point2, where P2 = [x2 y2 z2]
%
% precision (optional) - Although according to Bresenham's line
% algorithm, point coordinates x1 y1 z1 and x2 y2 z2 should
% be integer numbers, this program extends its limit to all
% real numbers. If any of them are floating numbers, you
% should specify how many digits of decimal that you would
% like to preserve. Be aware that the length of output X Y
% Z coordinates will increase in 10 times for each decimal
% digit that you want to preserve. By default, the precision
% is 0, which means that they will be rounded to the nearest
% integer.
%
% X - a set of x coordinates on Bresenham's line
%
% Y - a set of y coordinates on Bresenham's line
%
% Z - a set of z coordinates on Bresenham's line
%
% Therefore, all points in XYZ set (i.e. P(i) = [X(i) Y(i) Z(i)])
% will constitute the Bresenham's line between P1 and P1.
%
% Example:
% P1 = [12 37 6]; P2 = [46 3 35];
% [X Y Z] = bresenham_line3d(P1, P2);
% figure; plot3(X,Y,Z,'s','markerface','b');
%
% This program is ported to MATLAB from:
%
% B.Pendleton. line3d - 3D Bresenham's (a 3D line drawing algorithm)
% ftp://ftp.isc.org/pub/usenet/comp.sources.unix/volume26/line3d, 1992
%
% Which is also referenced by:
%
% Fischer, J., A. del Rio (2004). A Fast Method for Applying Rigid
% Transformations to Volume Data, WSCG2004 Conference.
% http://wscg.zcu.cz/wscg2004/Papers_2004_Short/M19.pdf
%
% - Jimmy Shen (jimmy@rotman-baycrest.on.ca)
%
function [X,Y,Z] = bresenham_line3d(P1, P2, precision)
if ~exist('precision','var') | isempty(precision) | round(precision) == 0
precision = 0;
P1 = round(P1);
P2 = round(P2);
else
precision = round(precision);
P1 = round(P1*(10^precision));
P2 = round(P2*(10^precision));
end
d = max(abs(P2-P1)+1);
X = zeros(1, d);
Y = zeros(1, d);
Z = zeros(1, d);
x1 = P1(1);
y1 = P1(2);
z1 = P1(3);
x2 = P2(1);
y2 = P2(2);
z2 = P2(3);
dx = x2 - x1;
dy = y2 - y1;
dz = z2 - z1;
ax = abs(dx)*2;
ay = abs(dy)*2;
az = abs(dz)*2;
sx = sign(dx);
sy = sign(dy);
sz = sign(dz);
x = x1;
y = y1;
z = z1;
idx = 1;
if(ax>=max(ay,az)) % x dominant
yd = ay - ax/2;
zd = az - ax/2;
while(1)
X(idx) = x;
Y(idx) = y;
Z(idx) = z;
idx = idx + 1;
if(x == x2) % end
break;
end
if(yd >= 0) % move along y
y = y + sy;
yd = yd - ax;
end
if(zd >= 0) % move along z
z = z + sz;
zd = zd - ax;
end
x = x + sx; % move along x
yd = yd + ay;
zd = zd + az;
end
elseif(ay>=max(ax,az)) % y dominant
xd = ax - ay/2;
zd = az - ay/2;
while(1)
X(idx) = x;
Y(idx) = y;
Z(idx) = z;
idx = idx + 1;
if(y == y2) % end
break;
end
if(xd >= 0) % move along x
x = x + sx;
xd = xd - ay;
end
if(zd >= 0) % move along z
z = z + sz;
zd = zd - ay;
end
y = y + sy; % move along y
xd = xd + ax;
zd = zd + az;
end
elseif(az>=max(ax,ay)) % z dominant
xd = ax - az/2;
yd = ay - az/2;
while(1)
X(idx) = x;
Y(idx) = y;
Z(idx) = z;
idx = idx + 1;
if(z == z2) % end
break;
end
if(xd >= 0) % move along x
x = x + sx;
xd = xd - az;
end
if(yd >= 0) % move along y
y = y + sy;
yd = yd - az;
end
z = z + sz; % move along z
xd = xd + ax;
yd = yd + ay;
end
end
if precision ~= 0
X = X/(10^precision);
Y = Y/(10^precision);
Z = Z/(10^precision);
end
return; % bresenham_line3d