-
Notifications
You must be signed in to change notification settings - Fork 2
/
plot-roc-curves.Rmd
242 lines (174 loc) · 7.72 KB
/
plot-roc-curves.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
---
title: "Plot ROC Curves"
description: |
This R script plots the receiver operating characteristic (ROC) curves for the convolutional neural network models and calculates the area under the ROC curves (AUC).
author:
- first_name: "Ayush"
last_name: "Noori"
url: https://www.github.com/ayushnoori
affiliation: Massachusetts General Hospital
affiliation_url: https://www.serranopozolab.org
orcid_id: 0000-0003-1420-1236
output:
distill::distill_article:
toc: true
---
```{r setup, include = FALSE}
knitr::opts_chunk$set(eval = FALSE)
```
# Dependencies
Load requisite packages and define directories.
```{r load-packages, message=FALSE, warning=FALSE}
# data manipulation
library(data.table)
library(purrr)
library(magrittr)
# data visualization
library(ggplot2)
# ROC curve
library(pROC)
library(plotROC)
# utilities
library(brainstorm)
```
Note that directories are relative to the R project path.
```{r define-directores}
# create file structure
celltypes = c("Astrocyte", "Microglia") %>% purrr::set_names()
# set directories
ddir = c("2 - Astrocyte CNN", "3 - Microglia CNN") %>% file.path("Results", "CNN", ., "Output") %>% purrr::set_names(celltypes)
dir4 = file.path("Results", "4 - Spectral Clustering")
dir8 = file.path("Results", "8 - CNN Interpretability")
```
# Load Data
Define function to read CNN output.
```{r read-cnn}
# function to read CNN output
read_cnn = function(fpath, lab) {
# select most recent CNN output file
fname = list.files(fpath, pattern = "\\.csv$") %>%
.[strsplit(., "_") %>% { order(map_chr(., 2), map_chr(., 1)) }] %>% .[length(.)]
# print and read file
cat(paste0("\n", toupper(lab), "\nTarget Directory: ", fpath, "\nInput File: ", fname, "\n"))
if (length(fname) > 0) return(fread(file.path(fpath, fname))) else return(NULL)
}
```
Load processed ROI measurement data from the `4 - Spectral Clustering` directory and CNN output from the `CNN\2 - Astrocyte CNN\Output` directory.
```{r load-data}
# read ROI data
all = readRDS(file.path(dir4, "Z-Score Data.rds"))[names(celltypes)]
# read CNN output
cnn = imap(ddir, read_cnn)
```
# Merge Data
Define function to merge ROI measurement data and clustering metadata with CNN output.
```{r merge-data}
# function to parse and merge data
merge_data = function(allx, cnnx) {
# parse CNN data
cnnx %>%
.[, c("V1", "Image") := NULL] %>%
.[, File := strsplit(File, "/")] %>%
.[, File := map(File, ~tail(.x, 1))] %>%
.[, ID := gsub("(\\.tif|AD_|CTRL_)", "", File)] %>%
.[, PredictedLabel := factor(PredictedLabel, levels = c(1, 0), labels = c("Control", "Alzheimer"))] %>%
.[, TrueLabel := factor(TrueLabel, levels = c(1, 0), labels = c("Control", "Alzheimer"))]
# merge data
setcolorder(cnnx, "ID")
cnnx = merge(cnnx, allx, by = "ID", all.x = TRUE, all.y = FALSE)
return(cnnx)
}
```
Map function over data objects for cell-types with CNN output data.
```{r map-merge}
# remove null CNN data
keep = names(which(!map_lgl(cnn, is.null)))
celltypes = celltypes[keep]; all = all[keep]; cnn = cnn[keep]
# function to parse and merge data
all = map(celltypes, ~merge_data(all[[.x]], cnn[[.x]]))
```
# Plot Data
Define function to plot histogram.
```{r plot-histogram}
# function to plot histogram
plot_histogram = function(dat, grp, grpcol, facet_grp = NULL, pos = "identity", nbins = 30, density = FALSE) {
p = ggplot(dat, aes(x = ProbabilityAD, fill = get(grp))) +
geom_histogram(position = pos, bins = nbins, alpha = 0.5, color = "black") +
scale_fill_manual(values = levels(dat[[grpcol]])) +
labs(x = "Alzheimer Classification Probability", y = "Count", fill = grp) +
theme(axis.title.x = element_text(size=14, face="bold"), axis.title.y = element_text(size=14, face="bold"),
legend.title = element_text(size=12, face="bold"), legend.text = element_text(size=10), legend.position = "bottom",
strip.text = element_text(size=16, face="bold"),
strip.background = element_rect(color="black", fill="#D9D9D9", size=1, linetype="solid"),
panel.border = element_rect(color = "black", fill = NA, size = 1))
if(!is.null(facet_grp)) {
p = p +
facet_wrap(~ get(facet_grp), ncol = 3) +
geom_density(aes(y=..density.. * 15), fill = "white", alpha = 0.3, linetype = "dashed")
}
if(density) {
p = p + geom_density(aes(y=..density.. * 10, color = get(grp)), fill = "white", alpha = 0.3, linetype = "dashed") +
scale_color_manual(values = levels(dat[[grpcol]])) + labs(color = grp)
}
return(p)
}
```
Define function to create plots.
```{r plot-data}
plot_data = function(dat, lab, pcols) {
# create subdirectory if needed
wdir = file.path(dir8, lab)
if(!dir.exists(wdir)) {dir.create(wdir)}
# define plotting colors
dat = dat %>%
.[, StateColors := factor(State, labels = pcols$State)] %>%
.[, SampleColors := factor(Sample, labels = pcols$Sample)] %>%
.[, ConditionColors := factor(Condition, labels = pcols$Condition)]
# create histograms
p_state = plot_histogram(dat, "State", "StateColors", "State")
p_condition = plot_histogram(dat, "Condition", "ConditionColors", nbins = 50, density = FALSE)
p_cs = plot_histogram(dat, "Condition", "ConditionColors", "State")
# save histograms
ggsave(file.path(wdir, "State Classification Probabilities.pdf"), p_state, width = 16, height = 6)
ggsave(file.path(wdir, "Condition Classification Probabilities.pdf"), p_condition, width = 6, height = 6)
ggsave(file.path(wdir, "Condition + State Classification Probabilities.pdf"), p_cs, width = 16, height = 6)
# calculate AUC
roc_calc = roc(response = dat$TrueLabel, predictor = dat$ProbabilityCTRL)
print(roc_calc)
# plot ROC curve
auc_lab = paste0("AUC = ", round(roc_calc$auc, 4))
roc_plot = ggplot(dat, aes(d = TrueLabel, m = ProbabilityCTRL)) +
ggtitle("Convolutional Neural Network ROC") +
geom_abline(aes(intercept = 0, slope = 1, color = "AUC = 0.5"), linetype = "dashed", size = 1)+
geom_roc(aes(color = auc_lab), labels = FALSE, pointsize = 0) +
geom_roc(linealpha = 0, n.cuts = 12, labelround = 2, labelsize = 3) +
# scale_colour_manual(values = c("#FF9B71", "#63B0CD")) +
scale_colour_manual(values = c("#577399", "#F39B6D")) +
labs(x = "1 - Specificity", y = "Sensitivity", color= "Area Under the Curve (AUC)") + theme_bw() +
theme(plot.title = element_text(size = 16, hjust = 0.5, face = "bold"),
axis.title.x = element_text(size=14, face="bold"),
axis.title.y = element_text(size=14, face="bold"),
legend.title = element_text(size=12, face="bold"),
legend.text = element_text(size=12),
legend.position = c(0.72, 0.14),
legend.background = element_rect(fill = "white", color = "black"),
panel.border = element_rect(color = "black", fill = NA, size = 1))
# save ROC curve
ggsave(file.path(wdir, "ROC Curve.pdf"), roc_plot, width = 6, height = 6)
# write(export_interactive_roc(roc_plot), file = file.path(wdir, "ROC Curve.html"))
# return data
return(dat)
}
```
Create the plots specified in `plot_data` by mapping over `all`.
```{r create-plots}
# define color palette
cols = list(
Distance = c('< 50 um' = "#F95738", '50-100 um' = "#EE964B", '> 100 um' = "#F4D35E", 'None' = "#736F72"),
Sample = c('1190' = "#A6CEE3", '1301' = "#5D9FC9", '1619' = "#2A7FB0", '1684' = "#79B79A", '1820' = "#9ED57B", '2124' = "#5AB348", '2148' = "#619E45", '2157' = "#CC9B7F", '2169' = "#F37272", '2191' = "#E62D2F", '2207' = "#ED593B", '2242' = "#FBB268", '2250' = "#FDA13B", '2274' = "#FF7F00"),
Condition = c(Control = "#377EB8", Alzheimer = "#CE6D8B"),
State = c('Homeostatic' = "#39B200", 'Intermediate' = "#F0C808", 'Reactive' = "#960200")
)
# create plots
plots = imap(all, ~plot_data(.x, .y, cols))
```