forked from parton-quark/Laplacian
-
Notifications
You must be signed in to change notification settings - Fork 0
/
resume.tex
executable file
·156 lines (133 loc) · 7.09 KB
/
resume.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
\documentclass[a4j,10pt]{jsarticle}
\usepackage{layout,url,resume}
\usepackage[dvipdfmx]{graphicx}
\pagestyle{empty}
\begin{document}
%\layout
\title{ Laplacian in Cylindrical coordinate system}
% 和文著者名
\author{
parton \thanks{aqua}
}
% 和文概要
%\begin{abstract}
%\end{abstract}
\maketitle
\thispagestyle{empty}
\section{Laplacian}
Cartesian coordinates are given as $(X, Y, Z)$.
In this system, laplacian is defined as
$$\Delta f = \frac{\partial ^ 2 f}{\partial X^2} + \frac{\partial ^ 2 f}{\partial Y^2} + \frac{\partial ^ 2 f}{\partial Z^2}$$
\section{Cylindrical coordinate system}
Cylindrical coordinates are given as $(r, \theta, z)$.
\subsection{mapping}
Cartesian coordinates and cylindrical coordinates are mapped as follows
\begin{eqnarray}
X &=& r\cos \theta \\
Y &=& r\sin \theta \\
Z &=&z
\end{eqnarray}
By using this definition,
\begin{eqnarray}
r &=& {(X^2 + Y^2)}^\frac{1}{2} \\
\theta &=& \tan^-1 \frac{Y}{X} \\
z &=& Z
\end{eqnarray}
\subsection{Preparation}
By (4),
\begin{equation}
\frac{\partial r}{\partial X} = \frac{\partial}{\partial X} {(X^2 + Y^2)}^\frac{1}{2}\\
= X{(X^2 + Y^2)}^-\frac{1}{2}\\
=\cos \theta \\
\end{equation}
\begin{equation}
\frac{\partial r}{\partial X} = \frac{\partial}{\partial Y} {(X^2 + Y^2)}^\frac{1}{2}\\
= Y{(X^2 + Y^2)}^-\frac{1}{2}\\
=\sin \theta \\
\end{equation}
\begin{equation}
\frac{\partial r}{\partial X} = \frac{\partial}{\partial Z} {(X^2 + Y^2)}^\frac{1}{2} = 0
\end{equation}
By (5)\footnote{$$\frac{\partial }{\partial u} \tan ^ {-1} u = \frac{1}{1+u^2} $$},
\begin{equation}
\frac{\partial \theta}{\partial X} = \frac{\partial}{\partial X} \tan ^ {-1} \frac{Y}{X} \\
= -\frac{Y}{X^2 + Y^2}\\
= - \frac{1}{r}\sin\theta
\end{equation}
\begin{equation}
\frac{\partial \theta}{\partial Y} = \frac{\partial}{\partial Y} \tan ^ {-1} \frac{Y}{X} \\
= \frac{Y}{X^2 + Y^2}\\
= \frac{1}{r}\cos \theta
\end{equation}
\begin{equation}
\frac{\partial \theta}{\partial Z} = \frac{\partial}{\partial Z} \tan ^ {-1} \frac{Y}{X} \\
= 0
\end{equation}
By (6),
\begin{equation}
\frac{\partial z}{\partial X} = 0
\end{equation}
\begin{equation}
\frac{\partial z}{\partial Y} = 0
\end{equation}
\begin{equation}
\frac{\partial z}{\partial Z} = 1
\end{equation}
\section{function in cylindrical coordinate system}
Let $f$ be a function in cylindrical coordinate system.
$$f = (r, \theta, z)$$
Cylindrical coordinate system can be regarded as a function of orthogonal coordinates\footnote{(4),(5), and (6)}. Therefore, function $f$ can be regarded as a composite function.
\begin{equation}
f(r(X, Y, Z), \theta(X, Y, Z), z(X, Y, Z))
\end{equation}
Partially differentiate equation (16) with X, Y, Z.
\begin{equation}
\frac{\partial f}{\partial X}=\frac{\partial r}{\partial X} \frac{\partial f}{\partial r}+\frac{\partial \theta}{\partial X} \frac{\partial f}{\partial \theta}+\frac{\partial z}{\partial X} \frac{\partial f}{\partial z}
\end{equation}
\begin{equation}
\frac{\partial f}{\partial Y}=\frac{\partial r}{\partial Y} \frac{\partial f}{\partial r}+\frac{\partial \theta}{\partial Y} \frac{\partial f}{\partial \theta}+\frac{\partial z}{\partial Y} \frac{\partial f}{\partial z}
\end{equation}
\begin{equation}
\frac{\partial f}{\partial Z}=\frac{\partial r}{\partial Z} \frac{\partial f}{\partial r}+\frac{\partial \theta}{\partial Z} \frac{\partial f}{\partial \theta}+\frac{\partial z}{\partial Z} \frac{\partial f}{\partial z}
\end{equation}
Then,
\begin{eqnarray*}
&\frac{\partial^2 f}{\partial X^2} =\frac{\partial}{\partial X}\frac{\partial f}{\partial X} \\
&=\frac{\partial r}{\partial X}\frac{\partial}{\partial r}\frac{\partial f}{\partial X} + \frac{\partial \theta}{\partial X}\frac{\partial}{\partial \theta}\frac{\partial f}{\partial X} + \frac{\partial z}{\partial X}\frac{\partial}{\partial z}\frac{\partial f}{\partial X} \\
&= \frac{\partial r}{\partial X}\frac{\partial}{\partial r}(17) +\frac{\partial \theta}{\partial X}\frac{\partial}{\partial \theta}(17) + \frac{\partial z}{\partial X}\frac{\partial}{\partial z}(17)
\end{eqnarray*}
\begin{eqnarray*}
&\frac{\partial^2 f}{\partial Y^2} =\frac{\partial}{\partial Y}\frac{\partial f}{\partial Y} \\
&=\frac{\partial r}{\partial Y}\frac{\partial}{\partial r}\frac{\partial f}{\partial Y} + \frac{\partial \theta}{\partial Y}\frac{\partial}{\partial \theta}\frac{\partial f}{\partial Y} + \frac{\partial z}{\partial Y}\frac{\partial}{\partial z}\frac{\partial f}{\partial Y} \\
&= \frac{\partial r}{\partial Y}\frac{\partial}{\partial r}(18) +\frac{\partial \theta}{\partial Y}\frac{\partial}{\partial \theta}(18) + \frac{\partial z}{\partial Y}\frac{\partial}{\partial z}(18)
\end{eqnarray*}
\begin{eqnarray*}
&\frac{\partial^2 f}{\partial Z^2} =\frac{\partial}{\partial Z}\frac{\partial f}{\partial Z} \\
&=\frac{\partial r}{\partial Z}\frac{\partial}{\partial r}\frac{\partial f}{\partial Z} + \frac{\partial \theta}{\partial Z}\frac{\partial}{\partial \theta}\frac{\partial f}{\partial Z} + \frac{\partial z}{\partial Z}\frac{\partial}{\partial z}\frac{\partial f}{\partial Z} \\
&= \frac{\partial r}{\partial Z}\frac{\partial}{\partial r}(19) +\frac{\partial \theta}{\partial Z}\frac{\partial}{\partial \theta}(19) + \frac{\partial z}{\partial Z}\frac{\partial}{\partial z}(19)
\end{eqnarray*}
Using these equations, laplacian is
\begin{eqnarray*}
&\Delta f = \frac{\partial^2 f}{\partial Z^2} \\
&= \frac{\partial r}{\partial X}\frac{\partial}{\partial r}(17) +\frac{\partial \theta}{\partial X}\frac{\partial}{\partial \theta}(17) + \frac{\partial z}{\partial X}\frac{\partial}{\partial z}(17) \\
& + \frac{\partial r}{\partial Y}\frac{\partial}{\partial r}(18) +\frac{\partial \theta}{\partial Y}\frac{\partial}{\partial \theta}(18) + \frac{\partial z}{\partial Y}\frac{\partial}{\partial z}(18) \\
& + \frac{\partial r}{\partial Z}\frac{\partial}{\partial r}(19) +\frac{\partial \theta}{\partial Z}\frac{\partial}{\partial \theta}(19) + \frac{\partial z}{\partial Z}\frac{\partial}{\partial z}(19)
\end{eqnarray*}
Substitute (7)〜(15) to this equation and got
\begin{eqnarray*}
&\Delta f = \cos \theta \frac{\partial}{\partial r} (\cos \theta \frac{\partial f}{\partial r} - \frac{1}{r}\sin \frac{\partial f}{\partial \theta})\\
&-\frac{1}{r}\sin\theta \frac{\partial}{\partial \theta} (\cos\theta \frac{\partial f}{\partial r} - \frac{1}{r}\sin\theta \frac{\partial f}{\partial \theta})\\
&+\sin \theta \frac{\partial}{\partial r} (\sin \theta \frac{\partial f}{\partial r} + \frac{1}{r}\cos \theta \frac{\partial f}{\partial \theta} )\\
&+\frac{1}{r}\cos \theta \frac{\partial}{\partial \theta} (\sin \theta \frac{\partial f}{\partial r} + \frac{1}{r}\cos\theta \frac{\partial f}{\partial \theta}) \\
&+ \frac{\partial}{\partial z} (\frac{\partial f}{\partial z})
\end{eqnarray*}
Transform the equation
\begin{equation}
\Delta f = \frac{1}{r}\frac{\partial }{\partial r}(r \frac{\partial f}{\partial r})+\frac{1}{r^2}\frac{\partial ^2 f}{\partial \theta^2} + \frac{\partial ^2 f}{\partial z^2}
\end{equation}
\section{参考}
埼玉工業大学 機械工学学習セミナー(小西克享) テーマB27 ラプラシアンの直交座標から円柱座標への座標変換(2016)
\bibliographystyle{junsrt}
\bibliography{resume}
\end{document}
% end of file