-
Notifications
You must be signed in to change notification settings - Fork 9
/
test_dnn.cpp
209 lines (180 loc) · 7.11 KB
/
test_dnn.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
//| This file is a part of the sferes2 framework.
//| Copyright 2009, ISIR / Universite Pierre et Marie Curie (UPMC)
//| Main contributor(s): Jean-Baptiste Mouret, mouret@isir.fr
//|
//| This software is a computer program whose purpose is to facilitate
//| experiments in evolutionary computation and evolutionary robotics.
//|
//| This software is governed by the CeCILL license under French law
//| and abiding by the rules of distribution of free software. You
//| can use, modify and/ or redistribute the software under the terms
//| of the CeCILL license as circulated by CEA, CNRS and INRIA at the
//| following URL "http://www.cecill.info".
//|
//| As a counterpart to the access to the source code and rights to
//| copy, modify and redistribute granted by the license, users are
//| provided only with a limited warranty and the software's author,
//| the holder of the economic rights, and the successive licensors
//| have only limited liability.
//|
//| In this respect, the user's attention is drawn to the risks
//| associated with loading, using, modifying and/or developing or
//| reproducing the software by the user in light of its specific
//| status of free software, that may mean that it is complicated to
//| manipulate, and that also therefore means that it is reserved for
//| developers and experienced professionals having in-depth computer
//| knowledge. Users are therefore encouraged to load and test the
//| software's suitability as regards their requirements in conditions
//| enabling the security of their systems and/or data to be ensured
//| and, more generally, to use and operate it in the same conditions
//| as regards security.
//|
//| The fact that you are presently reading this means that you have
//| had knowledge of the CeCILL license and that you accept its terms.
#define BOOST_TEST_DYN_LINK
#define BOOST_TEST_MODULE dnn
#include <iostream>
#include <cmath>
#include <algorithm>
#include <boost/archive/xml_oarchive.hpp>
#include <boost/archive/xml_iarchive.hpp>
#include <boost/archive/binary_oarchive.hpp>
#include <boost/archive/binary_iarchive.hpp>
#include <boost/test/unit_test.hpp>
#include <boost/serialization/nvp.hpp>
#include <boost/assign/std/vector.hpp>
#include <boost/assign/list_of.hpp>
#include <sferes/fit/fitness.hpp>
#include <sferes/gen/evo_float.hpp>
#include <sferes/phen/parameters.hpp>
#include "gen_dnn.hpp"
#include "phen_dnn.hpp"
using namespace sferes;
using namespace sferes::gen::dnn;
using namespace sferes::gen::evo_float;
template<typename T1, typename T2>
void check_list_equal(const T1& v1, const T2& v2) {
BOOST_CHECK_EQUAL(v1.size(), v2.size());
typename T1::const_iterator it1 = v1.begin();
typename T1::const_iterator it2 = v2.begin();
for (; it1 != v1.end(); ++it1, ++it2)
BOOST_CHECK(fabs(*it1 - *it2) < 1e-3);
}
template<typename NN>
void check_nn_equal(NN& nn1, NN& nn2) {
nn1.init();
nn2.init();
BOOST_CHECK_EQUAL(nn1.get_nb_inputs(), nn2.get_nb_inputs());
BOOST_CHECK_EQUAL(nn1.get_nb_outputs(), nn2.get_nb_outputs());
BOOST_CHECK_EQUAL(nn1.get_nb_neurons(), nn2.get_nb_neurons());
BOOST_CHECK_EQUAL(nn1.get_nb_connections(), nn2.get_nb_connections());
// nn1.write("/tmp/tmp1.dot");
// nn2.write("/tmp/tmp2.dot");
// std::ifstream ifs1("/tmp/tmp1.dot"), ifs2("/tmp/tmp2.dot");
// while(!ifs1.eof() && !ifs2.eof())
// {
// //if (ifs1.get() != ifs2.get()) exit(1);
// BOOST_CHECK_EQUAL((char)ifs1.get(), (char)ifs2.get());
// }
std::pair<typename NN::vertex_it_t, typename NN::vertex_it_t> vp1 =
boost::vertices(nn1.get_graph());
std::pair<typename NN::vertex_it_t, typename NN::vertex_it_t> vp2 =
boost::vertices(nn2.get_graph());
while (vp1.first != vp1.second) {
BOOST_CHECK_EQUAL(nn1.get_graph()[*vp1.first].get_in_degree(),
nn2.get_graph()[*vp2.first].get_in_degree());
check_list_equal(nn1.get_graph()[*vp1.first].get_afparams(),
nn2.get_graph()[*vp1.first].get_afparams());
check_list_equal(nn1.get_graph()[*vp1.first].get_pfparams(),
nn2.get_graph()[*vp1.first].get_pfparams());
++vp1.first;
++vp2.first;
}
}
struct Params {
struct evo_float {
SFERES_CONST float mutation_rate = 0.1f;
SFERES_CONST float cross_rate = 0.1f;
SFERES_CONST mutation_t mutation_type = polynomial;
SFERES_CONST cross_over_t cross_over_type = sbx;
SFERES_CONST float eta_m = 15.0f;
SFERES_CONST float eta_c = 15.0f;
};
struct parameters {
// maximum value of parameters
SFERES_CONST float min = -5.0f;
// minimum value
SFERES_CONST float max = 5.0f;
};
struct dnn {
SFERES_CONST size_t nb_inputs = 4;
SFERES_CONST size_t nb_outputs = 1;
SFERES_CONST size_t min_nb_neurons = 4;
SFERES_CONST size_t max_nb_neurons = 5;
SFERES_CONST size_t min_nb_conns = 100;
SFERES_CONST size_t max_nb_conns = 101;
SFERES_CONST float max_weight = 2.0f;
SFERES_CONST float max_bias = 2.0f;
SFERES_CONST float m_rate_add_conn = 1.0f;
SFERES_CONST float m_rate_del_conn = 1.0f;
SFERES_CONST float m_rate_change_conn = 1.0f;
SFERES_CONST float m_rate_add_neuron = 1.0f;
SFERES_CONST float m_rate_del_neuron = 1.0f;
SFERES_CONST int io_param_evolving = true;
SFERES_CONST init_t init = random_topology;
};
};
BOOST_AUTO_TEST_CASE(direct_gen) {
using namespace nn;
typedef phen::Parameters<gen::EvoFloat<1, Params>, fit::FitDummy<>, Params> weight_t;
typedef phen::Parameters<gen::EvoFloat<1, Params>, fit::FitDummy<>, Params> bias_t;
typedef PfWSum<weight_t> pf_t;
typedef AfTanh<bias_t> af_t;
sferes::gen::Dnn<Neuron<pf_t, af_t>, Connection<weight_t>, Params> gen1, gen2, gen3, gen4;
gen1.random();
gen2.random();
gen1.cross(gen2, gen3, gen4);
gen3.mutate();
gen4.mutate();
gen2.mutate();
}
BOOST_AUTO_TEST_CASE(direct_nn_serialize) {
srand(0);
using namespace nn;
typedef phen::Parameters<gen::EvoFloat<1, Params>, fit::FitDummy<>, Params> weight_t;
typedef phen::Parameters<gen::EvoFloat<1, Params>, fit::FitDummy<>, Params> bias_t;
typedef PfWSum<weight_t> pf_t;
typedef AfTanh<bias_t> af_t;
typedef sferes::gen::Dnn<Neuron<pf_t, af_t>, Connection<weight_t>, Params> gen_t;
typedef phen::Dnn<gen_t, fit::FitDummy<>, Params> phen_t;
typedef boost::archive::binary_oarchive oa_t;
typedef boost::archive::binary_iarchive ia_t;
for (size_t i = 0; i < 10; ++i) {
phen_t indiv[3];
indiv[0].random();
indiv[0].mutate();
indiv[0].mutate();
indiv[0].mutate();
indiv[0].nn().init();
{
std::ofstream ofs("/tmp/serialize_nn1.bin", std::ios::binary);
oa_t oa(ofs);
oa & indiv[0];
}
{
std::ifstream ifs("/tmp/serialize_nn1.bin", std::ios::binary);
ia_t ia(ifs);
ia & indiv[1];
}
indiv[2].nn() = indiv[0].nn();
using namespace boost::assign;
std::vector<float> in = list_of(0.5f)(1.0f)(-0.25f)(1.101f);
for (size_t j = 0; j < 3; ++j)
indiv[j].nn().init();
for (size_t i = 0; i < 10; ++i)
for (size_t j = 0; j < 3; ++j)
indiv[j].nn().step(in);
for (size_t j = 1; j < 3; ++j)
BOOST_CHECK_CLOSE(indiv[0].nn().get_outf(0), indiv[j].nn().get_outf(0), 1e-5);
}
}