forked from ReactionMechanismGenerator/RMG-Py
-
Notifications
You must be signed in to change notification settings - Fork 0
/
diffModels.py
307 lines (273 loc) · 13.5 KB
/
diffModels.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
This script can be used to compare two RMG-generated kinetics models. To use,
pass the
"""
import math
import numpy
from matplotlib import pylab
import os.path
#import matplotlib.pyplot
import logging
from rmgpy.chemkin import loadChemkinFile
from rmgpy.reaction import ReactionModel
from rmgpy.rmg.output import saveDiffHTML
################################################################################
def compareModelKinetics(model1, model2):
"""
Compare the kinetics of :class:`ReactionModel` objects `model1` and
`model2`, printing the results to stdout.
"""
# Determine reactions that both models have in common
commonReactions = {}
for rxn1 in model1.reactions:
for rxn2 in model2.reactions:
if rxn1.isIsomorphic(rxn2):
commonReactions[rxn1] = rxn2
model2.reactions.remove(rxn2)
break
uniqueReactions1 = [rxn for rxn in model1.reactions if rxn not in commonReactions.keys()]
uniqueReactions2 = model2.reactions
print '{0:d} reactions were found in both models:'.format(len(commonReactions))
for rxn in commonReactions:
print ' {0!s}'.format(rxn)
print '{0:d} reactions were only found in the first model:'.format(len(uniqueReactions1))
for rxn in uniqueReactions1:
print ' {0!s}'.format(rxn)
print '{0:d} reactions were only found in the second model:'.format(len(uniqueReactions2))
for rxn in uniqueReactions2:
print ' {0!s}'.format(rxn)
from rmgpy.kinetics import Chebyshev
T = 1000; P = 1e5
kinetics1 = []; kinetics2 = []
for rxn1, rxn2 in commonReactions.iteritems():
kinetics1.append(rxn1.getRateCoefficient(T,P))
if rxn1.isIsomorphic(rxn2, eitherDirection=False):
kinetics2.append(rxn2.getRateCoefficient(T,P))
else:
kinetics2.append(rxn2.getRateCoefficient(T,P) / rxn2.getEquilibriumConstant(T))
fig = pylab.figure(figsize=(8,6))
ax = pylab.subplot(1,1,1)
pylab.loglog(kinetics1, kinetics2, 'o', picker=5)
xlim = pylab.xlim()
ylim = pylab.ylim()
lim = (min(xlim[0], ylim[0]), max(xlim[1], ylim[1]))
ax.loglog(lim, lim, '-k')
pylab.xlabel('Model 1 rate coefficient (SI units)')
pylab.ylabel('Model 2 rate coefficient (SI units)')
pylab.title('T = {0:g} K, P = {1:g} bar'.format(T, P/1e5))
pylab.xlim(lim)
pylab.ylim(lim)
def onpick(event):
xdata = event.artist.get_xdata()
ydata = event.artist.get_ydata()
for ind in event.ind:
print commonReactions.keys()[ind]
print 'k(T,P) = {0:9.2e} from model 1'.format(xdata[ind])
print 'k(T,P) = {0:9.2e} from model 2'.format(ydata[ind])
print 'ratio = 10**{0:.2f}'.format(math.log10(xdata[ind] / ydata[ind]))
connection_id = fig.canvas.mpl_connect('pick_event', onpick)
pylab.show()
def compareModelSpecies(model1, model2):
"""
This function compares two RMG models and returns a list of common reactions
as a dictionary, as well as a list of unique reactions for each model.
"""
commonSpecies = []
uniqueSpecies1 = model1.species[:]
uniqueSpecies2 = []
for spec2 in model2.species:
for spec1 in uniqueSpecies1[:]: # make a copy so you don't remove from the list you are iterating over
if spec1.isIsomorphic(spec2):
commonSpecies.append([spec1, spec2])
uniqueSpecies1.remove(spec1)
break
else:
uniqueSpecies2.append(spec2)
# Remove species in the mechanism that aren't identified (includes those called out as species
# but not used)
for spec in uniqueSpecies1[:]: # make a copy so you don't remove from the list you are iterating over
if not len(spec.molecule):
uniqueSpecies1.remove(spec)
logging.warning("Removing species {!r} from model 1 because it has no molecule info".format(spec))
for spec in uniqueSpecies2[:]: # make a copy so you don't remove from the list you are iterating over
if not spec.molecule:
uniqueSpecies2.remove(spec)
logging.warning("Removing species {!r} from model 2 because it has no molecule info".format(spec))
return commonSpecies, uniqueSpecies1, uniqueSpecies2
def compareModelReactions(model1, model2):
"""
This function compares two RMG models and returns a list of common reactions
as a dictionary, as well as a list of unique reactions for each model.
"""
reactionList1 = model1.reactions[:]
reactionList2 = model2.reactions[:]
# remove reactions that have an unidentified species
to_remove = []
for reactionList in (reactionList1, reactionList2):
for reaction in reactionList:
for side in (reaction.products, reaction.reactants):
for species in side:
if not species.molecule:
to_remove.append((reactionList,reaction))
logging.warning("Removing reaction {!r} that had unidentified species {!r}".format(reaction, species))
break
for reactionList, reaction in to_remove:
reactionList.remove(reaction)
commonReactions = []; uniqueReactions1 = []; uniqueReactions2 = []
for rxn1 in reactionList1:
for rxn2 in reactionList2[:]: # make a copy so you don't remove from the list you are iterating over
if rxn1.isIsomorphic(rxn2):
commonReactions.append([rxn1, rxn2])
# Remove reaction 2 from being chosen a second time.
# Let each reaction only appear only once in the diff comparison.
# Otherwise this miscounts number of reactions in model 2.
reactionList2.remove(rxn2)
break
for rxn1 in reactionList1:
for r1, r2 in commonReactions:
if rxn1 is r1:
break
else:
uniqueReactions1.append(rxn1)
for rxn2 in reactionList2:
for r1, r2 in commonReactions:
if rxn2 is r2:
break
else:
uniqueReactions2.append(rxn2)
return commonReactions, uniqueReactions1, uniqueReactions2
def saveCompareHTML(outputDir,chemkinPath1,speciesDictPath1,chemkinPath2,speciesDictPath2,readComments1=True,readComments2=True):
"""
Saves a model comparison HTML file based on two sets of chemkin and species dictionary
files.
"""
model1 = ReactionModel()
model1.species, model1.reactions = loadChemkinFile(chemkinPath1, speciesDictPath1, readComments = readComments1)
model2 = ReactionModel()
model2.species, model2.reactions = loadChemkinFile(chemkinPath2, speciesDictPath2, readComments = readComments2)
commonReactions, uniqueReactions1, uniqueReactions2 = compareModelReactions(model1, model2)
commonSpecies, uniqueSpecies1, uniqueSpecies2 = compareModelSpecies(model1, model2)
outputPath = outputDir + 'diff.html'
saveDiffHTML(outputPath, commonSpecies, uniqueSpecies1, uniqueSpecies2, commonReactions, uniqueReactions1, uniqueReactions2)
def enthalpyDiff(species):
"""
Returns the enthalpy discrepancy between the same species in the two models
"""
thermo0 = species[0].thermo
thermo1 = species[1].thermo
if thermo0 and thermo1:
diff = species[0].thermo.discrepancy(species[1].thermo)
else:
diff = 99999999
return -1*diff
def kineticsDiff(reaction):
"""
Returns some measure of the discrepancy between two reactions in a model
"""
kinetics0 = reaction[0].kinetics
kinetics1 = reaction[1].kinetics
if kinetics0 and kinetics1:
diff = reaction[0].kinetics.discrepancy(reaction[1].kinetics)
else:
diff = 9999999
return -1*diff
################################################################################
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('chemkin1', metavar='CHEMKIN1', type=str, nargs=1,
help='the Chemkin file of the first model')
parser.add_argument('speciesDict1', metavar='SPECIESDICT1', type=str, nargs=1,
help='the species dictionary file of the first model')
parser.add_argument('thermo1', metavar = 'THERMO1', type=str, nargs = 1,
help = 'the thermo file of the first model')
parser.add_argument('chemkin2', metavar='CHEMKIN2', type=str, nargs=1,
help='the Chemkin file of the second model')
parser.add_argument('speciesDict2', metavar='SPECIESDICT2', type=str, nargs=1,
help='the species dictionary file of the second model')
parser.add_argument('thermo2', metavar = 'THERMO2', type=str, nargs = 1,
help = 'the thermo file of the second model')
args = parser.parse_args()
chemkin1 = args.chemkin1[0]
speciesDict1 = args.speciesDict1[0]
thermo1 = args.thermo1[0]
chemkin2 = args.chemkin2[0]
speciesDict2 = args.speciesDict2[0]
thermo2 = args.thermo2[0]
model1 = ReactionModel()
model1.species, model1.reactions = loadChemkinFile(chemkin1, speciesDict1, thermoPath = thermo1)
model2 = ReactionModel()
model2.species, model2.reactions = loadChemkinFile(chemkin2, speciesDict2, thermoPath = thermo2)
commonSpecies, uniqueSpecies1, uniqueSpecies2 = compareModelSpecies(model1, model2)
commonReactions, uniqueReactions1, uniqueReactions2 = compareModelReactions(model1, model2)
print '{0:d} species were found in both models:'.format(len(commonSpecies))
for spec1, spec2 in commonSpecies:
print ' {0!s}'.format(spec1)
if spec1.thermo and spec2.thermo:
spec1.molecule[0].calculateSymmetryNumber()
print ' {0:7.2f} {1:7.2f} {2:7.2f} {3:7.2f} {4:7.2f} {5:7.2f} {6:7.2f} {7:7.2f} {8:7.2f}'.format(
spec1.thermo.getEnthalpy(300) / 4184.,
spec1.thermo.getEntropy(300) / 4.184,
spec1.thermo.getHeatCapacity(300) / 4.184,
spec1.thermo.getHeatCapacity(400) / 4.184,
spec1.thermo.getHeatCapacity(500) / 4.184,
spec1.thermo.getHeatCapacity(600) / 4.184,
spec1.thermo.getHeatCapacity(800) / 4.184,
spec1.thermo.getHeatCapacity(1000) / 4.184,
spec1.thermo.getHeatCapacity(1500) / 4.184,
)
print ' {0:7.2f} {1:7.2f} {2:7.2f} {3:7.2f} {4:7.2f} {5:7.2f} {6:7.2f} {7:7.2f} {8:7.2f}'.format(
spec2.thermo.getEnthalpy(300) / 4184.,
spec2.thermo.getEntropy(300) / 4.184,
spec2.thermo.getHeatCapacity(300) / 4.184,
spec2.thermo.getHeatCapacity(400) / 4.184,
spec2.thermo.getHeatCapacity(500) / 4.184,
spec2.thermo.getHeatCapacity(600) / 4.184,
spec2.thermo.getHeatCapacity(800) / 4.184,
spec2.thermo.getHeatCapacity(1000) / 4.184,
spec2.thermo.getHeatCapacity(1500) / 4.184,
)
print '{0:d} species were only found in the first model:'.format(len(uniqueSpecies1))
for spec in uniqueSpecies1:
print ' {0!s}'.format(spec)
print '{0:d} species were only found in the second model:'.format(len(uniqueSpecies2))
for spec in uniqueSpecies2:
print ' {0!s}'.format(spec)
print '{0:d} reactions were found in both models:'.format(len(commonReactions))
for rxn1, rxn2 in commonReactions:
print ' {0!s}'.format(rxn1)
if rxn1.kinetics and rxn2.kinetics:
print ' {0:7.2f} {1:7.2f} {2:7.2f} {3:7.2f} {4:7.2f} {5:7.2f} {6:7.2f} {7:7.2f}'.format(
math.log10(rxn1.kinetics.getRateCoefficient(300, 1e5)),
math.log10(rxn1.kinetics.getRateCoefficient(400, 1e5)),
math.log10(rxn1.kinetics.getRateCoefficient(500, 1e5)),
math.log10(rxn1.kinetics.getRateCoefficient(600, 1e5)),
math.log10(rxn1.kinetics.getRateCoefficient(800, 1e5)),
math.log10(rxn1.kinetics.getRateCoefficient(1000, 1e5)),
math.log10(rxn1.kinetics.getRateCoefficient(1500, 1e5)),
math.log10(rxn1.kinetics.getRateCoefficient(2000, 1e5)),
)
print ' {0:7.2f} {1:7.2f} {2:7.2f} {3:7.2f} {4:7.2f} {5:7.2f} {6:7.2f} {7:7.2f}'.format(
math.log10(rxn2.kinetics.getRateCoefficient(300, 1e5)),
math.log10(rxn2.kinetics.getRateCoefficient(400, 1e5)),
math.log10(rxn2.kinetics.getRateCoefficient(500, 1e5)),
math.log10(rxn2.kinetics.getRateCoefficient(600, 1e5)),
math.log10(rxn2.kinetics.getRateCoefficient(800, 1e5)),
math.log10(rxn2.kinetics.getRateCoefficient(1000, 1e5)),
math.log10(rxn2.kinetics.getRateCoefficient(1500, 1e5)),
math.log10(rxn2.kinetics.getRateCoefficient(2000, 1e5)),
)
print '{0:d} reactions were only found in the first model:'.format(len(uniqueReactions1))
for rxn in uniqueReactions1:
print ' {0!s}'.format(rxn)
print '{0:d} reactions were only found in the second model:'.format(len(uniqueReactions2))
for rxn in uniqueReactions2:
print ' {0!s}'.format(rxn)
#commonSpecies.sort(key = enthalpyDiff)
#commonReactions.sort(key = kineticsDiff)
print "Saving output in diff.html"
outputPath = 'diff.html'
saveDiffHTML(outputPath, commonSpecies, uniqueSpecies1, uniqueSpecies2, commonReactions, uniqueReactions1, uniqueReactions2)
print "Finished!"