-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_architecture.py
256 lines (200 loc) · 8.27 KB
/
model_architecture.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
# -*- coding: utf-8 -*-
"""vision_project.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1yuRJ28jLkEYztgWHw-5T1dF8Bdax_RE5
"""
import tensorflow as tf
from tensorflow import keras
from sklearn.model_selection import train_test_split
import numpy as np
from keras.datasets import mnist
from sklearn.preprocessing import MinMaxScaler
import matplotlib.pyplot as plt
from keras.preprocessing.image import ImageDataGenerator
import os
import glob
import cv2
from google.colab.patches import cv2_imshow
import base64
from IPython.display import clear_output, Image
device_name = tf.test.gpu_device_name()
if device_name != '/device:GPU:0':
print(
'\n\nThis error most likely means that this notebook is not '
'configured to use a GPU. Change this in Notebook Settings via the '
'command palette (cmd/ctrl-shift-P) or the Edit menu.\n\n')
raise SystemError('GPU device not found')
# !unzip blue.zip
# !unzip white.zip
# !unzip referee.zip
# !unzip my_test.zip
# !unzip assets.zip
tf.__version__, keras.__version__
# LABELS
BLUE, WHITE, REF = 0, 1, 2
def reading_files(path, label):
files = glob.glob(path)
data, labels = [], []
for file in files:
I = cv2.imread(file)
data.append(I)
l = np.zeros((3,))
l[label] = 1
labels.append(l)
return np.array(data, dtype=np.float32), np.array(labels, dtype=np.float32)
def load_data(shuffle=True):
X, Y = None, None
checker = lambda X, M: M if X is None else np.vstack([M, X])
for path, label in (("./blue/*.jpg", BLUE),
("./white/*.jpg", WHITE), ("./referee/*.jpg", REF)):
data, labels = reading_files(path, label)
X = checker(X, data)
Y = checker(Y, labels)
if shuffle:
initial_shape_X, initial_shape_Y = X.shape, Y.shape
feature_count = np.prod(np.array([*X.shape[1:]]))
whole_d = np.hstack([X.reshape(X.shape[0], -1), Y])
np.random.shuffle(whole_d)
X = whole_d[:, :feature_count].reshape(initial_shape_X)
Y = whole_d[:, feature_count:]
return X, Y
def des_label(label):
i = np.argmax(label)
return ("BLUE", "WHITE", "REFEREE")[i]
X, Y = load_data()
X.shape, Y.shape
# showing one image
print(des_label(Y[0]))
cv2_imshow(X[0])
# train test split
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.1,
shuffle=True,
random_state=41)
X_train, X_val, Y_train, Y_val = train_test_split(X_train, Y_train,
test_size=0.15,
shuffle=True,
random_state=41)
X_train.shape, X_test.shape, Y_train.shape, Y_test.shape, X_val.shape, Y_val.shape
# preprocess
scaler = MinMaxScaler()
main_shape_X_train = X_train.shape
main_shape_X_test = X_test.shape
scaler_train = scaler.fit(X_train.reshape(X_train.shape[0], -1))
X_train = scaler.transform(X_train.reshape(X_train.shape[0], -1)).reshape(main_shape_X_train)
X_test = scaler.fit_transform(X_test.reshape(X_test.shape[0], -1)).reshape(*main_shape_X_test)
np.max(X_train[0].ravel()), np.min(X_train[0].ravel()), X_train.shape
def naive_inception_module(layer_in, f1=2, f2=2, f3=2):
# 1x1 conv
conv1 = keras.layers.Conv2D(f1, (1,1), padding='same', activation='relu')(layer_in)
# 3x3 conv
conv3 = keras.layers.Conv2D(f2, (3,3), padding='same', activation='relu')(layer_in)
# 5x5 conv
conv5 = keras.layers.Conv2D(f3, (5,5), padding='same', activation='relu')(layer_in)
# 3x3 max pooling
pool = keras.layers.MaxPooling2D((3,3), strides=(1,1), padding='same')(layer_in)
# concatenate filters, assumes filters/channels last
layer_out = keras.layers.concatenate([conv1, conv3, conv5, pool], axis=-1)
return layer_out
input_layer = keras.layers.Input([*X_train.shape[1:]])
second_layer = keras.layers.Conv2D(20, 5, padding="same")(input_layer)
th_layer = keras.layers.Activation("relu")(second_layer)
inception = naive_inception_module(th_layer)
inception = naive_inception_module(inception)
fo_layer = keras.layers.MaxPooling2D(pool_size=(2, 2), strides=(2, 2))(inception)
fi_layer = keras.layers.Flatten()(fo_layer)
x_layer = keras.layers.Dense(250,
kernel_initializer=keras.initializers.HeNormal(),
kernel_regularizer=keras.regularizers.L1())(fi_layer)
s_layer = keras.layers.Activation(keras.activations.relu)(x_layer)
e_layer = keras.layers.Dropout(rate=0.5)(s_layer)
n_layer = keras.layers.Dense(100,
kernel_initializer=keras.initializers.HeNormal(),
kernel_regularizer=keras.regularizers.L1())(e_layer)
t_layer = keras.layers.Activation(keras.activations.relu)(n_layer)
ee_layer = keras.layers.Dropout(rate=0.5)(t_layer)
out_layer = keras.layers.Dense(3, activation="softmax")(ee_layer)
model = keras.models.Model(inputs=input_layer, outputs=out_layer)
model.summary()
# model lenet 5 or vgg-16
def make_model(input_shape, output_dim):
layers = []
# init_kernel = lambda shape, dtype=tf.int32: tf.random.normal(shape, dtype=dtype)
layers.append(keras.layers.Input(input_shape))
layers.append(keras.layers.Conv2D(20, 5, padding="same", input_shape=input_shape))
layers.append(keras.layers.Activation("relu"))
layers.append(keras.layers.MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
layers.append(keras.layers.Conv2D(20, 5, padding="same"))
layers.append(keras.layers.Activation("relu"))
layers.append(keras.layers.MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
layers.append(keras.layers.Conv2D(10, 5, padding="same"))
layers.append(keras.layers.Activation("relu"))
layers.append(keras.layers.MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
layers.append(keras.layers.Flatten())
layers.append(keras.layers.Dense(80,
kernel_initializer=keras.initializers.HeNormal(),
kernel_regularizer=keras.regularizers.L1()))
layers.append(keras.layers.Activation(keras.activations.relu))
layers.append(keras.layers.Dropout(rate=0.5))
layers.append(keras.layers.Dense(50,
kernel_initializer=keras.initializers.HeNormal(),
kernel_regularizer=keras.regularizers.L1()))
layers.append(keras.layers.Activation(keras.activations.relu))
layers.append(keras.layers.Dropout(rate=0.5))
layers.append(keras.layers.Dense(output_dim, activation="softmax"))
model = keras.models.Sequential(layers)
model.summary()
return model
model = make_model(input_shape=[*X_train.shape[1:]], output_dim=3)
# compiling
model.compile(optimizer=keras.optimizers.Adam(),
loss=keras.losses.categorical_crossentropy,
metrics=["accuracy"])
datagen = ImageDataGenerator( # data augmentation
rotation_range=30,
width_shift_range=0.2,
height_shift_range=0.2,
zoom_range=0.2,
fill_mode='nearest')
batch_size = 128
history = model.fit(datagen.flow(X_train, Y_train, batch_size=batch_size),
validation_data=(X_val, Y_val),
steps_per_epoch=len(Y_train) // batch_size, epochs=50, workers=6)
plt.figure(figsize=(15, 10))
plt.subplot(1, 2, 1)
plt.plot(history.history['loss'], label='loss')
plt.plot(history.history['val_loss'], label='val_loss')
plt.legend()
plt.grid(True)
plt.subplot(1, 2, 2)
plt.plot(history.history['accuracy'], label='accuracy')
plt.plot(history.history['val_accuracy'], label='val_accuracy')
plt.legend()
plt.grid(True)
plt.show()
history.history.keys()
model.evaluate(X_test, Y_test)
pred = model.predict(X_test)
np.argmax(pred, axis=1), Y_test
# apply my test
I = cv2.imread("./my_test/referee.png")
I1 = cv2.imread("./my_test/referee1.png")
I2 = cv2.imread("./my_test/white.png")
I = cv2.resize(I, (80, 80))
I1= cv2.resize(I1, (80, 80))
I2= cv2.resize(I2, (80, 80))
cv2_imshow(I1)
cv2_imshow(I)
print(I.shape, I.reshape(1, -1).shape)
X_my_test = np.vstack([[I], [I1], [I2]])
Y_my_labels = np.vstack([np.array([0, 1, 0]),
np.array([0, 0, 1]),
np.array([0, 0, 1])])
pred = model.predict(X_my_test)
print(X_my_test.shape, Y_my_labels.shape)
np.argmax(pred, axis=1), pred
model_json = model.to_json()
with open("model.json", "w") as json_file:
json_file.write(model_json)
# serialize weights to HDF5
model.save_weights("model.h5")