-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmuellerData.m
1310 lines (1289 loc) · 51.6 KB
/
muellerData.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
classdef (InferiorClasses = {?matlab.graphics.axis.Axes}) muellerData
properties
Label % string
Value % 4,4,M,N,... array of Mueller matrix values
ErValue % 4,4,M,N,... array of Mueller matrix error values
Size % size of Value
Dims % cell array of length ndims(Value)-2 containing arrays of length M,N,...
DimNames % cell array of strings with names of a dimensions M,N,...
HV % M,N,... array of detector high voltage values (4PEM specific)
DC % M,N,... array of waveform DC values (4PEM specific)
reflection
end
methods
function obj = muellerData(value) % Class Constructor
obj.Size = size(value);
obj.Value = value;
obj.Label = '';
end
function varargout = subsref(obj,s) % overload subsref for custom indexing
switch s(1).type
case '()'
if length(obj) == 1 % positional indexing of object properties
if length(s(1).subs) ~= length(obj.Size)
error('Error. Size of object and requested index are not equal');
end
if length(s) == 1
varargout = {objSubset(obj,s)};
else
varargout = {builtin('subsref',objSubset(obj,s(1)),s(2:end))};
end
else
if length(s) == 1
varargout = {builtin('subsref',obj,s)}; % index object array
else
obj = builtin('subsref',obj,s(1));
if numel(obj) == 1
varargout = {builtin('subsref',obj,s(2:end))};
else
temp = builtin('subsref',obj(1),s(2:end));
if isa(temp,'muellerData')
for k=2:numel(obj)
temp(k) = builtin('subsref',obj(k),s(2:end));
end
else
temp = {temp};
for k=2:numel(obj)
temp{k} = builtin('subsref',obj(k),s(2:end));
end
end
varargout = {temp};
end
end
end
case '{}'
if length(obj) == 1
if length(s(1).subs) ~= length(obj.Size)
error('Error. Size of object and requested index are not equal');
end
if length(s) == 1
s = dims2index(obj,s);
varargout = {objSubset(obj,s)};
else
s(1) = dims2index(obj,s(1));
varargout = {builtin('subsref',objSubset(obj,s(1)),s(2:end))};
end
else
if any(arrayfun(@(x) length(s(1).subs) ~= length(x.Size),obj))
error('Error. Size of object and requested index are not equal');
end
if length(s) == 1
temp = obj;
for k=1:numel(obj)
subs = dims2index(obj(k),s);
temp(k) = objSubset(obj(k),subs);
varargout = {temp};
end
else
subs = dims2index(obj(1),s(1));
temp = builtin('subsref',objSubset(obj(1),subs),s(2:end));
if isa(temp,'muellerData')
for k=2:numel(obj)
subs = dims2index(obj(k),s(1));
temp(k) = builtin('subsref',objSubset(obj(k),subs),s(2:end));
end
else
temp = {temp};
for k=2:numel(obj)
subs = dims2index(obj(k),s(1));
temp{k} = builtin('subsref',objSubset(obj(k),subs),s(2:end));
end
end
varargout = {temp};
end
end
case '.'
if length(obj) > 1
temp = builtin('subsref',obj(1),s);
if isa(temp,'muellerData')
for k=2:numel(obj)
temp(k) = builtin('subsref',obj(k),s);
end
else
temp = {temp};
for k=2:numel(obj)
temp{k} = builtin('subsref',obj(k),s);
end
end
varargout = {temp};
else
varargout = {builtin('subsref',obj,s)};
end
end
end
function n = numArgumentsFromSubscript(~,~,~)
n = 1; % I don't like multiple outputs =P
end
function obj = merge(obj1,obj2) % merge two objects
if ~(length(obj1.Size) == length(obj2.Size))
error(['Objects not compatible with merge.'....
' Length of obj.Size must be equal for objects.'])
end
if isempty(obj1.Dims) || isempty(obj2.Dims)
error('Objects not compatible with merge. Dims must be defined.')
end
idx = find(cell2mat(cellfun(@isequal,obj1.Dims,obj2.Dims,'uniformoutput',0))==0);
if length(idx) > 1 || ~isempty(intersect(obj1.Dims{idx},obj2.Dims{idx}))
error('Objects not compatible with merge. Dims must differ in 1 element only.')
end
idx2 = length(obj1.Size) - length(obj1.Dims) + idx;
obj = muellerData(cat(idx2,obj1.Value,obj2.Value));
if ~isempty(obj1.ErValue) && ~isempty(obj2.ErValue)
obj.ErValue = cat(idx2,obj1.ErValue,obj2.ErValue);
end
if ~isempty(obj1.HV) && ~isempty(obj2.HV)
obj.HV = cat(idx,obj1.HV,obj2.HV);
end
if ~isempty(obj1.DC) && ~isempty(obj2.DC)
obj.DC = cat(idx,obj1.DC,obj2.DC);
end
obj.Dims = obj1.Dims;
obj.Dims{idx} = [obj1.Dims{idx} , obj2.Dims{idx}];
obj.DimNames = obj1.DimNames;
obj.reflection = obj1.reflection;
end
function obj = squeeze(obj)
obj.Value = squeeze(obj.Value);
obj.ErValue = squeeze(obj.ErValue);
obj.Size = size(obj.Value);
if ~isempty(obj.Dims)
logicalIdx = cellfun(@(x) ~isscalar(x),obj.Dims);
obj.Dims = obj.Dims(logicalIdx);
if ~isempty(obj.DimNames)
obj.DimNames = obj.DimNames(logicalIdx);
end
end
obj.HV = squeeze(obj.HV);
obj.DC = squeeze(obj.DC);
end
function obj = plus(obj1,obj2) % overloading of + for muellerData.
% to call, use: obj1 + obj2
% Dims and DimNames and reflection are copied from obj1
% It doesn't make sense to define HV and DC
if isa(obj1,'muellerData') && isa(obj2,'muellerData')
if isequal(obj1.Size,obj2.Size)
obj = muellerData(obj1.Value + obj2.Value);
obj.Dims = obj1.Dims;
obj.DimNames = obj1.DimNames;
obj.reflection = obj1.reflection;
else
error('Error in obj1 + obj2 for muellerData. obj.Size must be equal for objects.')
end
elseif isa(obj1,'muellerData') && isscalar(obj2)
obj = obj1;
obj.Value = obj.Value + obj2;
elseif isa(obj2,'muellerData') && isscalar(obj1)
obj = obj2;
obj.Value = obj.Value + obj1;
end
end
function obj = minus(obj1,obj2) % overloading of - for muellerData.
if isequal(obj1.Size,obj2.Size)
obj = muellerData(obj1.Value - obj2.Value);
obj.Dims = obj1.Dims;
obj.DimNames = obj1.DimNames;
obj.reflection = obj1.reflection;
else
error('Error in obj1 - obj2 for muellerData. obj.Size must be equal for objects.')
end
end
function obj = times(obj1,obj2) % overloading of .* for muellerData.
if isequal(obj1.Size,obj2.Size)
obj = muellerData(obj1.Value .* obj2.Value);
obj.Dims = obj1.Dims;
obj.DimNames = obj1.DimNames;
obj.reflection = obj1.reflection;
else
error('Error in obj1 .* obj2 for muellerData. obj.Size must be equal for objects.')
end
end
function obj = rdivide(obj1,obj2) % overloading of ./ for muellerData.
if isequal(obj1.Size,obj2.Size)
obj = muellerData(obj1.Value ./ obj2.Value);
obj.Dims = obj1.Dims;
obj.DimNames = obj1.DimNames;
obj.reflection = obj1.reflection;
else
error('Error in obj1 ./ obj2 for muellerData. obj.Size must be equal for objects.')
end
end
function obj = mtimes(obj1,obj2) % overloading of * for muellerData.
ck1 = isa(obj1, 'muellerData');
ck2 = isa(obj2, 'muellerData');
if ck1 && ck2
if ndims(obj2.Value) > ndims(obj1.Value)
obj = obj2;
else
obj = obj1;
end
obj.Value = multiprod(obj1.Value, obj2.Value, [1 2], [1 2]);
elseif ck1
obj = obj1;
obj.Value = multiprod(obj1.Value, obj2, [1 2], [1 2]);
else
obj = obj2;
obj.Value = multiprod(obj1, obj2.Value, [1 2], [1 2]);
end
% if isequal(obj1.Size,obj2.Size)
% val1 = shapeDown(obj1.Value);
% val2 = shapeDown(obj2.Value);
% for i=1:size(val1,3); val1(:,:,i) = val1(:,:,i)*val2(:,:,i); end
% obj = muellerData(shapeUp(val1,obj1.Size));
% obj.Dims = obj1.Dims;
% obj.DimNames = obj1.DimNames;
% obj.reflection = obj1.reflection;
% else
% error('Error in obj1 ./ obj2 for muellerData. obj.Size must be equal for objects.')
% end
end
function obj = mrdivide(obj1,obj2) % overloading of / for muellerData.
if isequal(obj1.Size,obj2.Size)
val1 = shapeDown(obj1.Value);
val2 = shapeDown(obj2.Value);
for i=1:size(val1,3); val1(:,:,i) = val1(:,:,i)/val2(:,:,i); end
obj = muellerData(shapeUp(val1,obj1.Size));
obj.Dims = obj1.Dims;
obj.DimNames = obj1.DimNames;
obj.reflection = obj1.reflection;
else
error('Error in obj1 ./ obj2 for muellerData. obj.Size must be equal for objects.')
end
end
function obj = mldivide(obj1,obj2) % overloading of \ for muellerData.
if isequal(obj1.Size,obj2.Size)
val1 = shapeDown(obj1.Value);
val2 = shapeDown(obj2.Value);
for i=1:size(val1,3); val1(:,:,i) = val1(:,:,i) \ val2(:,:,i); end
obj = muellerData(shapeUp(val1,obj1.Size));
obj.Dims = obj1.Dims;
obj.DimNames = obj1.DimNames;
obj.reflection = obj1.reflection;
else
error('Error in obj1 ./ obj2 for muellerData. obj.Size must be equal for objects.')
end
end
function handles = plot(varargin)
handles = prePlot(varargin{:});
end
function handles = subplot(varargin)
% Example: % obj.subplot( {'lb','lbp','cb';'ld','ldp','cd'} , 'legend','none' )
[obj,funcs] = varargin{:};
figure
M = size(funcs,1);
N = size(funcs,2);
funcs = funcs(:);
handles = gobjects(1,M*N);
for idx=1:M*N
ax = subplot(M,N,idx);
fn = str2func(funcs{idx});
handles(idx) = plot(fn(obj),'handle',ax,varargin{3:end},...
'title',[', ',upper(funcs{idx})]);
end
end
function handles = print(varargin)
filePath = varargin{2}; % extract the filepath
[pathStr,name] = fileparts(filePath);
filePath = [pathStr,'/',varargin{1}.Label,name];
handles = prePlot(varargin{[1,3:end]}); % make the figure
print(gcf,filePath,'-depsc'); % print figure as .eps file
end
% Calls to static methods on obj.Value, returns new class instance %
function obj = optProp(obj)
obj.Value = obj.s_optProp(obj.Value);
obj.ErValue = [];
obj.Size = size(obj.Value);
end
function obj = lm(varargin)
obj = varargin{1};
if nargin == 1
obj.Value = obj.s_lm(obj.Value);
else
obj.Value = obj.s_lm(obj.Value,varargin{2});
end
obj.ErValue = [];
obj.Size = size(obj.Value);
end
function obj = logm(obj)
obj.Value = obj.s_logm(obj.Value);
obj.ErValue = [];
obj.Size = size(obj.Value);
end
function obj = lu(obj)
obj = obj.logm;
g = diag([-1 1 1 1]);
for n=1:size(obj.Value,3)
obj.Value(:,:,n) = (obj.Value(:,:,n) + g*obj.Value(:,:,n).'*g)/2;
end
end
function obj = lm2(obj)
obj = obj.logm;
g = diag([-1 1 1 1]);
for n=1:size(obj.Value,3)
obj.Value(:,:,n) = (obj.Value(:,:,n) - g*obj.Value(:,:,n).'*g)/2;
end
end
function obj = expm(obj)
obj.Value = obj.s_expm(obj.Value);
obj.ErValue = [];
obj.Size = size(obj.Value);
end
function obj = lb(obj)
obj.Value = obj.s_lb(obj.Value);
obj.ErValue = [];
obj.Size = size(obj.Value);
end
function obj = ld(obj)
obj.Value = obj.s_ld(obj.Value);
obj.ErValue = [];
obj.Size = size(obj.Value);
end
function obj = lbp(obj)
obj.Value = obj.s_lbp(obj.Value);
obj.ErValue = [];
obj.Size = size(obj.Value);
end
function obj = ldp(obj)
obj.Value = obj.s_ldp(obj.Value);
obj.ErValue = [];
obj.Size = size(obj.Value);
end
function obj = cb(obj)
obj.Value = obj.s_cb(obj.Value);
obj.ErValue = [];
obj.Size = size(obj.Value);
end
function obj = cd(obj)
obj.Value = obj.s_cd(obj.Value);
obj.ErValue = [];
obj.Size = size(obj.Value);
end
function obj = a(obj)
obj.Value = obj.s_a(obj.Value);
obj.ErValue = [];
obj.Size = size(obj.Value);
end
function obj = a_aniso(obj)
obj.Value = obj.s_a_aniso(obj.Value);
obj.ErValue = [];
obj.Size = size(obj.Value);
end
function obj = a_iso(obj)
obj.Value = obj.s_a_iso(obj.Value);
obj.ErValue = [];
obj.Size = size(obj.Value);
end
function obj = ldmag(obj)
obj.Value = obj.s_ldmag(obj.Value);
obj.ErValue = [];
obj.Size = size(obj.Value);
end
function obj = ldang(obj)
obj.Value = obj.s_ldang(obj.Value);
obj.ErValue = [];
obj.Size = size(obj.Value);
end
function obj = lbang(obj)
obj.Value = obj.s_lbang(obj.Value);
obj.ErValue = [];
obj.Size = size(obj.Value);
end
function obj = lbmag(obj)
obj.Value = obj.s_lbmag(obj.Value);
obj.ErValue = [];
obj.Size = size(obj.Value);
end
function obj = di(obj)
obj.Value = obj.s_di(obj.Value);
obj.ErValue = [];
obj.Size = size(obj.Value);
end
function obj = jones(obj)
obj.Value = obj.s_jones(obj.Value);
obj.ErValue = [];
obj.Size = size(obj.Value);
end
function obj = nearestjones(obj)
obj.Value = obj.s_nearestjones(obj.Value);
obj.ErValue = [];
obj.Size = size(obj.Value);
end
function obj = mfilter(obj)
obj.Value = obj.s_mfilter(obj.Value);
obj.ErValue = [];
obj.Size = size(obj.Value);
end
function obj = covar(obj)
obj.Value = obj.s_covar(obj.Value);
obj.ErValue = [];
obj.Size = size(obj.Value);
end
function obj = mrotate(obj,angle_rad)
obj.Value = obj.s_mrotate(obj.Value,angle_rad);
obj.ErValue = [];
obj.Size = size(obj.Value);
end
function obj = lm2optProp(obj)
% [LB;LD;LBp;LDp;CB;CD;A]
lm = obj.Value;
sz = size(lm);
lm = shapeDown(lm);
val(1,:) = lm(4,3,:);
val(2,:) = -lm(1,2,:);
val(3,:) = lm(2,4,:);
val(4,:) = -lm(1,3,:);
val(5,:) = lm(2,3,:);
val(6,:) = lm(1,4,:);
val(7,:) = -lm(1,1,:);
obj.Value = shapeUp(val, sz);
end
end
methods(Static)
% value = obj.Value
function r = s_optProp(value)
sz = size(value);
value = shapeDown(value);
J = nearestJones(value);
K = ( J(1,1,:).*J(2,2,:) - J(1,2,:).*J(2,1,:)).^(-1/2);
T = acos( K.*( J(1,1,:) + J(2,2,:) )./2); % 2*T = sqrt(L.^2 + Lp.^2 + C.^2)
O = (T.*K)./(sin(T));
L=1i.*O.*( J(1,1,:) - J(2,2,:) );
Lp=1i.*O.*( J(1,2,:) + J(2,1,:) );
C=O.*( J(1,2,:) - J(2,1,:) );
LB=real(L);
LD=-imag(L);
LBp=real(Lp);
LDp=-imag(Lp);
CB=real(C);
CD=-imag(C);
A = -2*real(log(1./K)); % mean absorption
r = shapeUp(squeeze([LB;LD;LBp;LDp;CB;CD;A]),sz);
end
function value = s_lm(varargin)
value = varargin{1};
sz = size(value);
if nargin == 1
value = shapeDown(value);
%J = nearestJones(value);
J = MJ2J(value);
K = ( J(1,1,:).*J(2,2,:) - J(1,2,:).*J(2,1,:)).^(-1/2);
T = acos( K.*( J(1,1,:) + J(2,2,:) )./2);
O = (T.*K)./(sin(T));
L=1i.*O.*( J(1,1,:) - J(2,2,:) );
Lp=1i.*O.*( J(1,2,:) + J(2,1,:) );
C=O.*( J(1,2,:) - J(2,1,:) );
LB=real(L);
LD=-imag(L);
LBp=real(Lp);
LDp=-imag(Lp);
CB=real(C);
CD=-imag(C);
A = 2*real(log(1./K)); % mean absorption
value = shapeUp([A,-LD,-LDp,CD ; -LD,A,CB,LBp ; -LDp,-CB,A,-LB ; CD,-LBp,LB,A],sz);
else
n_int = varargin{2};
value = reshape(value,4,4,size(value,3),[]);
for j = 1:size(value,4)
M = value(:,:,:,j);
M = flip(M,3);
J = nearestJones(M);
K=(J(1,1,1).*J(2,2,1) - J(1,2,1)*J(2,1,1)).^(-1/2);
T=2*acos((K.*(J(1,1,1) + J(2,2,1)))./2);
O=(T+2*pi*n_int).*K./(sin(T/2)*2);
N = size(J,3);
L = zeros(1,N);
Lp = zeros(1,N);
C = zeros(1,N);
A = zeros(1,N);
L(1) = 1i.*O.*(J(1,1,1) - J(2,2,1));
Lp(1) = 1i.*O.*(J(1,2,1) + J(2,1,1));
C(1) = O.*(J(1,2,1) - J(2,1,1));
A(1) = 2*real(log(1./K));
n = n_int;
for i = 2:N
if n==0 || n==-1
n_ar = [0,-1,1,-2,2];
else
n_ar = [n-1,-n,n,-(n+1),n+1];
end
K=(J(1,1,i).*J(2,2,i) - J(1,2,i)*J(2,1,i)).^(-1/2);
T=2*acos((K.*(J(1,1,i) + J(2,2,i)))./2);
O=(T+2*pi*n_ar).*K./(sin(T/2)*2);
l = 1i.*O.*(J(1,1,i) - J(2,2,i));
lp = 1i.*O.*(J(1,2,i) + J(2,1,i));
c = O.*(J(1,2,i) - J(2,1,i));
diffs = sum([L(i-1)-l;Lp(i-1)-lp;C(i-1)-c],1);
[~,I] = min(diffs);
L(i) = l(I);
Lp(i) = lp(I);
C(i) = c(I);
n = n_ar(I);
A(i) = 2*real(log(1./K));
end
LB=reshape(real(L),1,1,[]);
LD=reshape(-imag(L),1,1,[]);
LBp=reshape(real(Lp),1,1,[]);
LDp=reshape(-imag(Lp),1,1,[]);
CB=reshape(real(C),1,1,[]);
CD=reshape(-imag(C),1,1,[]);
A = reshape(A,1,1,[]);
value(:,:,:,j) = ...
flip([A,-LD,-LDp,CD ; -LD,A,CB,LBp ; -LDp,-CB,A,-LB ; CD,-LBp,LB,A],3);
end
value = reshape(value,sz);
end
end
function r = s_logm(value) % log of Mueller matrix with filtering
sz = size(value);
value = shapeDown(value);
Mfiltered = filterM(value);
r = shapeUp(zeros(size(Mfiltered)),sz);
for n=1:size(value,3); r(:,:,n) = logm(Mfiltered(:,:,n)); end
end
function r = s_expm(r) % log of Mueller matrix with filtering
sz = size(r);
r = shapeDown(r);
for n=1:size(r,3); r(:,:,n) = expm(r(:,:,n)); end
r = shapeUp(r,sz);
end
function r = s_lb(value)
sz = size(value);
value = shapeDown(value);
J = nearestJones(value);
r = jonesAnisotropy(J);
r = real(1i.*r.*( J(1,1,:) - J(2,2,:) ));
r = shapeUp(r,sz);
end % 0,90 linear retardance
function r = s_ld(value)
sz = size(value);
value = shapeDown(value);
J = nearestJones(value);
r = jonesAnisotropy(J);
r = -imag(1i.*r.*( J(1,1,:) - J(2,2,:) ));
r = shapeUp(r,sz);
end % 0,90 linear extinction
function r = s_lbp(value)
sz = size(value);
value = shapeDown(value);
J = nearestJones(value);
r = jonesAnisotropy(J);
r = real(1i.*r.*( J(1,2,:) + J(2,1,:) ));
r = shapeUp(r,sz);
end % 45,-45 linear retardance
function r = s_ldp(value)
sz = size(value);
value = shapeDown(value);
J = nearestJones(value);
r = jonesAnisotropy(J);
r = -imag(1i.*r.*( J(1,2,:) + J(2,1,:) ));
r = shapeUp(r,sz);
end % 45,-45 linear extinction
function r = s_cb(value)
sz = size(value);
value = shapeDown(value);
J = nearestJones(value);
r = jonesAnisotropy(J);
r = real(r.*( J(1,2,:) - J(2,1,:) ));
r = shapeUp(r,sz);
end % circular retardance
function r = s_cd(value)
sz = size(value);
value = shapeDown(value);
J = nearestJones(value);
r = jonesAnisotropy(J);
r = -imag(r.*( J(1,2,:) - J(2,1,:) ));
r = shapeUp(r,sz);
end % circular extinction
function r = s_a(value) % total mean extinction
sz = size(value);
value = shapeDown(value);
J = nearestJones(value);
r = -2*real(log( ( J(1,1,:).*J(2,2,:) - J(1,2,:).*J(2,1,:)).^(1/2) ));
r = shapeUp(r,sz);
end
function r = s_a_aniso(value) % anisotropic part of the mean extinction
sz = size(value);
value = shapeDown(value);
J = nearestJones(value);
K = ( J(1,1,:).*J(2,2,:) - J(1,2,:).*J(2,1,:)).^(-1/2);
T = acos( K.*( J(1,1,:) + J(2,2,:) )./2); % 2*T = sqrt(L.^2 + Lp.^2 + C.^2)
O = (T.*K)./(sin(T));
LD = -imag(1i.*O.*( J(1,1,:) - J(2,2,:) ));
LDp = -imag(1i.*O.*( J(1,2,:) + J(2,1,:) ));
CD = -imag(O.*( J(1,2,:) - J(2,1,:) ));
r = shapeUp(sqrt(LD.^2 + LDp.^2 + CD.^2),sz); % not same as imag(2*T) !
end
function r = s_a_iso(value) % isotropic part of the mean extinction
sz = size(value);
value = shapeDown(value);
J = nearestJones(value);
K = ( J(1,1,:).*J(2,2,:) - J(1,2,:).*J(2,1,:)).^(-1/2);
T = acos( K.*( J(1,1,:) + J(2,2,:) )./2); % 2*T = sqrt(L.^2 + Lp.^2 + C.^2)
O = (T.*K)./(sin(T));
LD = -imag(1i.*O.*( J(1,1,:) - J(2,2,:) ));
LDp = -imag(1i.*O.*( J(1,2,:) + J(2,1,:) ));
CD = -imag(O.*( J(1,2,:) - J(2,1,:) ));
r = shapeUp(-2*real(log(1./K)) - sqrt(LD.^2 + LDp.^2 + CD.^2),sz);
end
function r = s_ldmag(value)
sz = size(value);
value = shapeDown(value);
J = nearestJones(value);
O = jonesAnisotropy(J);
LD = imag(1i.*O.*( J(1,1,:) - J(2,2,:) ));
LDp = imag(1i.*O.*( J(1,2,:) + J(2,1,:) ));
r = shapeUp(sqrt(LD.^2 + LDp.^2),sz);
end
function r = s_ldang(value)
sz = size(value);
value = shapeDown(value);
J = nearestJones(value);
O = jonesAnisotropy(J);
LD = -imag(1i.*O.*( J(1,1,:) - J(2,2,:) ));
LDp = -imag(1i.*O.*( J(1,2,:) + J(2,1,:) ));
r = shapeUp(atan2(LDp , LD)./2,sz);
%out = out + pi*(out < 0);
end
function r = s_lbang(value)
sz = size(value);
value = shapeDown(value);
J = nearestJones(value);
O = jonesAnisotropy(J);
LB = real(1i.*O.*( J(1,1,:) - J(2,2,:) ));
LBp = real(1i.*O.*( J(1,2,:) + J(2,1,:) ));
r = atan2(LBp , LB)./2;
r = shapeUp(r + pi*(r < 0),sz);
end
function r = s_lbmag(value)
sz = size(value);
value = shapeDown(value);
J = nearestJones(value);
O = jonesAnisotropy(J);
LB = real(1i.*O.*( J(1,1,:) - J(2,2,:) ));
LBp = real(1i.*O.*( J(1,2,:) + J(2,1,:) ));
r = shapeUp(sqrt(LB.^2 + LBp.^2),sz);
end
function r = s_di(value) % Depolarization Index
sz = size(value);
value = shapeDown(value);
r = shapeUp((sqrt(squeeze(sum(sum(value.^2,1),2))./squeeze(value(1,1,:)).^2-1)./sqrt(3)).',sz);
end
function r = s_jones(value) % Jones matrix of a Mueller-Jones matrix
sz = size(value);
value = shapeDown(value);
r = shapeUp(MJ2J(value),sz);
end
function r = s_nearestjones(value)
sz = size(value);
value = shapeDown(value);
r = nearestJones(value); % Jones matrix
% next line just phases the Jones matrix so that the
% imaginary part of J(1,1) = 0. i.e., it matches case 'jones'
for n=1:size(r,3); r(:,:,n) = exp( -1i*angle(r(1,1,n)) ) * r(:,:,n); end
r = shapeUp(r,sz);
end
function r = s_mfilter(value) % closest physical Mueller matrix
sz = size(value);
value = shapeDown(value);
r = shapeUp(filterM(value),sz);
end
function r = s_covar(value) % Mueller to Cloude covariance
sz = size(value);
value = shapeDown(value);
r = shapeUp(M2Cov(value),sz);
end
function r = plotter(varargin)
r = linePlot(varargin{:});
end
function r = s_mrotate(M,theta)
% M is a Mueller matrix array of any dimension. The first two dimension
% must be the Mueller matrix elements. MMout is a Mueller array with the
% same dimension as the input array.
% October 17, 2016: sign of theta changed so +LB transforms to +LB' with
% theta = pi/4.
sz = size(M);
M = shapeDown(M);
r = M;
theta=-2*theta;
C2=cos(theta);
S2=sin(theta);
r(1,2,:) = M(1,2,:)*C2 + M(1,3,:)*S2;
r(1,3,:) = M(1,3,:)*C2 - M(1,2,:)*S2;
r(2,1,:) = M(2,1,:)*C2 + M(3,1,:)*S2;
r(3,1,:) = M(3,1,:)*C2 - M(2,1,:)*S2;
r(2,4,:) = M(2,4,:)*C2 + M(3,4,:)*S2;
r(3,4,:) = M(3,4,:)*C2 - M(2,4,:)*S2;
r(4,2,:) = M(4,2,:)*C2 + M(4,3,:)*S2;
r(4,3,:) = M(4,3,:)*C2 - M(4,2,:)*S2;
r(2,2,:) = C2*(M(3,2,:)*S2 + M(2,2,:)*C2) + S2*(M(3,3,:)*S2 + M(2,3,:)*C2);
r(2,3,:) = C2*(M(3,3,:)*S2 + M(2,3,:)*C2) - S2*(M(3,2,:)*S2 + M(2,2,:)*C2);
r(3,2,:) = -C2*(M(2,2,:)*S2 - M(3,2,:)*C2) - S2*(M(2,3,:)*S2 - M(3,3,:)*C2);
r(3,3,:) = S2*(M(2,2,:)*S2 - M(3,2,:)*C2) - C2*(M(2,3,:)*S2 - M(3,3,:)*C2);
r = shapeUp(r,sz);
end
function fig = mergeAxes(h,sz)
h = h(:);
set(h,'Units','Pixels');
p = get(h,'Position');
ti = get(h,'TightInset');
extents = ...
cellfun(@(p,ti) [ti(1) + ti(3) + p(3) , ti(2) + ti(4) + p(4)],p,ti,'uniformoutput',0);
extents = max(cell2mat(extents));
[I,J] = ind2sub(sz,1:length(h));
hspace = 10;
vspace = 10;
figSz = (flip(sz)).*[hspace,vspace] + flip(sz).*extents ;
fig = figure('Units','Pixels','Position',[0, 0, figSz(1), figSz(2)] );
for i=1:length(h)
os1 = p{i}(1) - ti{i}(1);
os2 = p{i}(2) - ti{i}(2);
obj = h(i).Parent.Children;
set(obj,'Units','Pixels');
pos = get(obj,'Position');
obj = copyobj(obj,fig);
if length(obj) == 1
pos = pos + [J(i) * hspace + (J(i) - 1) * extents(1) - os1 ,...
(sz(1)-I(i)) * vspace + (sz(1)-I(i)) * extents(2) - os2 ,...
0,0];
obj.Position = pos;
else
for j=1:length(obj)
temp = pos{j} + ...
[(J(i)-1) * hspace + (J(i) - 1) * extents(1) - os1 ,...
(sz(1)-I(i)) * vspace + (sz(1)-I(i)) * extents(2) - os2 ,...
0,0];
obj(j).Position = temp;
end
end
end
end
end
end
% LOCAL FUNCTIONS
% =========================================================================
function s = dims2index(obj,s) % for indexing with Dims
if isempty(obj.Dims)
error('Error. obj.Dims not defined.');
end
sz = length(s.subs) - length(obj.Dims);
for i=1:length(obj.Dims)
if s.subs{i+sz} ~= ':'
[X,I] = sort(obj.Dims{i}); % added this to allow unsorted Dims
indices = unique(round(fracIndex(X,s.subs{i+sz})),'first');
s.subs{i+sz} = I(indices);
end
end
end
function obj = objSubset(obj,s) % obj parsing
obj.Value = obj.Value(s.subs{:});
obj.Size = size(obj.Value);
if ~isempty(obj.ErValue)
obj.ErValue = obj.ErValue(s.subs{:});
end
obj.DimNames = obj.DimNames;
lsubs = length(s.subs) + 1;
if ~isempty(obj.HV)
obj.HV = obj.HV(s.subs{(lsubs-sum(size(obj.HV) ~= 1)):end});
end
if ~isempty(obj.DC)
obj.DC = obj.DC(s.subs{(lsubs-sum(size(obj.DC) ~= 1)):end});
end
if ~isempty(obj.Dims)
sz = lsubs - length(obj.Dims) - 1;
for i=1:length(obj.Dims)
obj.Dims{i} = obj.Dims{i}(s.subs{i+sz});
end
end
end
function out = shapeDown(out)
if ndims(out) > 3 % reshape array into 4,4,N
out = reshape(out,4,4,[]);
end
end % reshape
function out = shapeUp(out,sz) % overly complicated reshaping
sz2 = size(out);
if length(sz)>=3 % reshape to match input dimensions
out = reshape(out,[sz2(1:(length(sz2)-1)),sz(3:length(sz))]);
end
sz2 = size(out);
if sz2(1) == 1 % remove leading singletons if necessary
if sz2(2) == 1
out = shiftdim(out,2); % out = reshape(out,sz2(3:end));
else
out = shiftdim(out,1); %out = reshape(out,sz2(2:end));
end
end
end
function J = MJ2J(M) % Mueller-Jones to Jones
J(1,1,:) = ((M(1,1,:)+M(1,2,:)+M(2,1,:)+M(2,2,:))/2).^(1/2);
k = 1./(2.*J(1,1,:));
J(1,2,:) = k.*(M(1,3,:)+M(2,3,:)-1i.*(M(1,4,:)+M(2,4,:)));
J(2,1,:) = k.*(M(3,1,:)+M(3,2,:)+1i.*(M(4,1,:)+M(4,2,:)));
J(2,2,:) = k.*(M(3,3,:)+M(4,4,:)+1i.*(M(4,3,:)-M(3,4,:)));
end
function C = M2Cov(M) % Mueller to Cloude covariance
C(1,1,:) = M(1,1,:) + M(1,2,:) + M(2,1,:) + M(2,2,:);
C(1,2,:) = M(1,3,:) + M(1,4,:)*1i + M(2,3,:) + M(2,4,:)*1i;
C(1,3,:) = M(3,1,:) + M(3,2,:) - M(4,1,:)*1i - M(4,2,:)*1i;
C(1,4,:) = M(3,3,:) + M(3,4,:)*1i - M(4,3,:)*1i + M(4,4,:);
C(2,1,:) = M(1,3,:) - M(1,4,:)*1i + M(2,3,:) - M(2,4,:)*1i;
C(2,2,:) = M(1,1,:) - M(1,2,:) + M(2,1,:) - M(2,2,:);
C(2,3,:) = M(3,3,:) - M(3,4,:)*1i - M(4,3,:)*1i - M(4,4,:);
C(2,4,:) = M(3,1,:) - M(3,2,:) - M(4,1,:)*1i + M(4,2,:)*1i;
C(3,1,:) = M(3,1,:) + M(3,2,:) + M(4,1,:)*1i + M(4,2,:)*1i;
C(3,2,:) = M(3,3,:) + M(3,4,:)*1i + M(4,3,:)*1i - M(4,4,:);
C(3,3,:) = M(1,1,:) + M(1,2,:) - M(2,1,:) - M(2,2,:);
C(3,4,:) = M(1,3,:) + M(1,4,:)*1i - M(2,3,:) - M(2,4,:)*1i;
C(4,1,:) = M(3,3,:) - M(3,4,:)*1i + M(4,3,:)*1i + M(4,4,:);
C(4,2,:) = M(3,1,:) - M(3,2,:) + M(4,1,:)*1i - M(4,2,:)*1i;
C(4,3,:) = M(1,3,:) - M(1,4,:)*1i - M(2,3,:) + M(2,4,:)*1i;
C(4,4,:) = M(1,1,:) - M(1,2,:) - M(2,1,:) + M(2,2,:);
C = C./2;
end
function M = Cov2M(C) % Cloude covariance to Mueller
M(1,1,:) = C(1,1,:) + C(2,2,:) + C(3,3,:) + C(4,4,:);
M(1,2,:) = C(1,1,:) - C(2,2,:) + C(3,3,:) - C(4,4,:);
M(1,3,:) = C(1,2,:) + C(2,1,:) + C(3,4,:) + C(4,3,:);
M(1,4,:) = ( -C(1,2,:) + C(2,1,:) - C(3,4,:) + C(4,3,:) )*1i;
M(2,1,:) = C(1,1,:) + C(2,2,:) - C(3,3,:) - C(4,4,:);
M(2,2,:) = C(1,1,:) - C(2,2,:) - C(3,3,:) + C(4,4,:);
M(2,3,:) = C(1,2,:) + C(2,1,:) - C(3,4,:) - C(4,3,:);
M(2,4,:) = ( -C(1,2,:) + C(2,1,:) + C(3,4,:) - C(4,3,:) )*1i;
M(3,1,:) = C(1,3,:) + C(2,4,:) + C(3,1,:) + C(4,2,:);
M(3,2,:) = C(1,3,:) - C(2,4,:) + C(3,1,:) - C(4,2,:);
M(3,3,:) = C(1,4,:) + C(2,3,:) + C(3,2,:) + C(4,1,:);
M(3,4,:) = ( -C(1,4,:) + C(2,3,:) - C(3,2,:) + C(4,1,:) )*1i;
M(4,1,:) = ( C(1,3,:) + C(2,4,:) - C(3,1,:) - C(4,2,:) )*1i;
M(4,2,:) = ( C(1,3,:) - C(2,4,:) - C(3,1,:) + C(4,2,:) )*1i;
M(4,3,:) = ( C(1,4,:) + C(2,3,:) - C(3,2,:) - C(4,1,:) )*1i;
M(4,4,:) = C(1,4,:) - C(2,3,:) - C(3,2,:) + C(4,1,:);
M = real(M)./2;
end
function J = nearestJones(M)
C = M2Cov(M);
J = zeros(2,2,size(C,3));
for n=1:size(C,3)
[V,D] = eig(C(:,:,n),'vector');
[~,mx] = max(D);
J(:,:,n) = sqrt(D(mx))*reshape(V(:,mx),2,2).';
end
end
function M = filterM(M) % M to nearest physical M
C_raw = M2Cov(M);
C = zeros(size(C_raw));
for n=1:size(C_raw,3)
[V,D] = eig(C_raw(:,:,n),'vector');
list = find(D > 0.00001).';
idx = 0;
temp = zeros(4,4,length(list));
for j = list
idx = idx + 1;
temp(:,:,idx) = D(j)*V(:,j)*V(:,j)';
end
C(:,:,n) = sum(temp,3);
end
M = Cov2M(C);
end
function O = jonesAnisotropy(J)
K = ( J(1,1,:).*J(2,2,:) - J(1,2,:).*J(2,1,:)).^(-1/2);
T = acos( K.*( J(1,1,:) + J(2,2,:) )./2);
O = (T.*K)./(sin(T));
end
function fracIndx = fracIndex(X,y) %fractional index
% X: 1xN array of increasing values
% y: array of values in the range of X
% fracIndx is an array the length of y that contains the fractional
% index of the y values in array X.
% e.g., X = [2,4,6]; y = [4,5]; gives, fracIndx = [2,2.5];
fracIndx = zeros(1,length(y));
for idx = 1:length(y)
if y(idx) >= X(length(X))
fracIndx(idx) = length(X);
elseif y(idx) <= X(1)
fracIndx(idx) = 1;
else
a = find(X <= y(idx));
a = a(length(a));
b = find(X > y(idx));
b = b(1);
fracIndx(idx) = a+(y(idx)-X(a))/(X(b)-X(a));
end
end
end
function handles = prePlot(varargin)
obj = varargin{1};
if all(obj.Size(1:2) == 4)
plotTool = @MMplot;
else
plotTool = @linePlot;
end
if ~isempty(obj.Label)
if any(strcmpi('title',varargin))
idx = find(strcmpi('title',varargin)) + 1;
varargin{idx} = [obj.Label, ' ',varargin{idx}];
else
sz = length(varargin);
varargin{sz+1} = 'title';
varargin{sz+2} = obj.Label;
end
end
if ~any(strcmpi('legend',varargin))
if length(obj.Dims) >= 2 && ~isempty(obj.Dims{2})
if length(obj.Dims) >= 3 && ~isempty(obj.Dims{3})
idx = 1;
Labels = cell(1,length(obj.Dims{2})*length(obj.Dims{3}));
for i=1:length(obj.Dims{2})
for j=1:length(obj.Dims{3})
Labels{idx} = [num2str(obj.Dims{2}(i)),' ; ',num2str(obj.Dims{3}(j))];
idx = idx + 1;
end
end
LabelNames = [obj.DimNames{2},' ; ',obj.DimNames{3}];
else
Labels = obj.Dims{2};
LabelNames = obj.DimNames{2};
end
sz = length(varargin);
varargin{sz+1} = 'legend';
varargin{sz+2} = {LabelNames,Labels};
end
end
handles = plotTool(obj.Dims{1},obj.Value,obj.ErValue,varargin{2:end});
end
function handles = MMplot(Lam,MMdata,MMerror,varargin)
% Mueller matrix 2D plotting utility
% Makes a 4 x 4 array of 2-D line plots with full control over line and
% axes properties.
% Outputs: [1 x 16] array of axis handles
%
% Required positional inputs:
% Lam: [1 x n] array of wavelengths (X-axis)
% MMdata: [4 x 4 x n x ...] Mueller matrix array
% Optional positional inputs:
% LineSpec: string containing a valid lineSpec. Type "doc LineSpec" in
% command window for more info. Default is "-", a solid line.
% Optional Name-Value pairs inputs:
% ev: bool. converts X axis to eV. e.g., 'ev',true
% handles: [1 x 16] array of plot handles. New handles are created if not given.
% limY: scalar numeric. limits how small the range of the y-axes can be.
% fontsize: sets font-size. Default is 12 pts. Changing the fontsize
% of existing plots is not recommended. (Set on first call).
% lineNV: a 1D cell array containing Name-Value pair arguments valid for
% Chart Line Properties.
% axNV: a 1D cell array containing Name-Value pairs arguments valid for
% Axes Properties.
% size: Size of the figure in pixels given as a two element vector [X Y].
% A warning is issued if the requested size is larger than the screen
% size minus the height of the OSX status bar (on my machine).
% Default size is [1000 700].
% title: string containing a title to place at the top of the figure.
% legend: two-element cell array. First element is a string to use for
% title of the legend. Second element is either a numeric array
% containing values to use for labels of each plot, or a cell array
% of strings to use as labels. Only set legend on last call, or just
% write all plots at once (better).
% vSpace: Adds extra space vertical between plots, in pixels
% borderFactor: Increases white space around plots. This value is a
% multiple of the largest line width on the plots.