-
Notifications
You must be signed in to change notification settings - Fork 4
/
invi.py
55 lines (45 loc) · 1.75 KB
/
invi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import cv2
import numpy as np
import time
capture_video = cv2.VideoCapture(0)
# give the camera to warm up
time.sleep(1)
count = 0
background = 0
#just leave the screen up and running for like 5 sec ith just background
for i in range(60):
return_val, background = capture_video.read()
if return_val == False:
continue
background = np.flip(background, axis=1) # flipping of the frame
while (capture_video.isOpened()):
return_val, img = capture_video.read()
if not return_val:
break
count = count + 1
img = np.flip(img, axis=1)
# convert the image - BGR to HSV
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
lower_red = np.array([100, 40, 40])
upper_red = np.array([100, 255, 255])
mask1 = cv2.inRange(hsv, lower_red, upper_red)
# setting the lower and upper range for mask2
lower_red = np.array([155, 40, 40])
upper_red = np.array([180, 255, 255])
mask2 = cv2.inRange(hsv, lower_red, upper_red)
# the above block of code could be replaced with
# some other code depending upon the color of your cloth
# i am using red you can use any R G B colour
mask1 = mask1 + mask2
# Refining the mask corresponding to the detected red color
mask1 = cv2.morphologyEx(mask1, cv2.MORPH_OPEN, np.ones((3, 3),np.uint8), iterations=2)
mask1 = cv2.dilate(mask1, np.ones((3, 3), np.uint8), iterations=1)
mask2 = cv2.bitwise_not(mask1)
# Generating the final output
res1 = cv2.bitwise_and(background, background, mask=mask1)
res2 = cv2.bitwise_and(img, img, mask=mask2)
final_output = cv2.addWeighted(res1, 1, res2, 1, 0)
cv2.imshow("INVISIBLE CLOAK", final_output)
k = cv2.waitKey(10)
if k == 27:
break