-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathskopt_test.py
50 lines (44 loc) · 1.99 KB
/
skopt_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
def create(model, x, y, scoring = 'f1', n_folds: int = 5, random_state: int = 42, hyperparams_space=[]):
if scoring == 'cohen_kappa':
scoring = cohen_kappa_scorer
def calc_scores(hyperparams=None):
cv_splitter = StratifiedKFold(n_splits=n_folds, random_state=random_state, shuffle=True)
if hyperparams is not None:
model.set_params(**hyperparams)
scores = cross_val_score(model, x, y, cv=cv_splitter, scoring=scoring, verbose=0, n_jobs=-1)
return scores
@skopt.utils.use_named_args(hyperparams_space)
def objective(**hyperparams):
scores = calc_scores(hyperparams)
print('Hyperparams: {} max_score={:0.4f}'.format(hyperparams, scores.max()))
return 1 - scores.max()
def tune_hyperparams():
res = skopt.gp_minimize(objective, hyperparams_space)
return res
return {
'calc_scores': calc_scores,
'objective': objective,
'tune_hyperparams': tune_hyperparams
}
def calc_cv_avg_score(model, x, y, scoring):
return create(model, X_train, y_train, scoring)['calc_scores']().mean()
scaler = MinMaxScaler() # Vigtigt for mange ML metoder såsom Logistisk Regression, SVM, kNN, PCA
lr_pipeline = Pipeline([
('scaler', scaler),
('anova', SelectKBest(f_classif, k=10)),
('lr',
LogisticRegression(
class_weight='balanced', # cost-sensitive learning
solver='liblinear', # godt til lille datasæt og kan håndtere L1 regularisering
max_iter=250, # for at undgå `Liblinear failed to converge`
)
)
])
# calc_cv_avg_score(lr_pipeline, X_train, y_train, scoring='f1')
lr_hyperparam_space = [
skopt.space.Real(0.001, 1000, name='lr__C', prior='log-uniform'),
skopt.space.Categorical(['l1', 'l2'], name='lr__penalty'),
skopt.space.Integer(2, 14, name='anova__k'),
]
tune_hyperparams = create(lr_pipeline, X_train, y_train, hyperparams_space=lr_hyperparam_space)['tune_hyperparams']
result = tune_hyperparams()