-
Notifications
You must be signed in to change notification settings - Fork 7
/
train_video_classifier.py
864 lines (726 loc) · 35.9 KB
/
train_video_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Generic training script that trains a model using a given dataset."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
import numpy as np
import time
import os
import math
from datetime import datetime
from tensorflow.python.ops import control_flow_ops
from deployment import model_deploy
from deployment import train_util
from nets import nets_factory
from preprocessing import preprocessing_factory
import async_loader
try:
xrange
except NameError:
xrange = range
slim = tf.contrib.slim
tf.app.flags.DEFINE_string(
'mode', 'train',
'Run mode. train or test or extract.')
tf.app.flags.DEFINE_string(
'master', '', 'The address of the TensorFlow master to use.')
tf.app.flags.DEFINE_string(
'train_dir', '/tmp/tfmodel/',
'Directory where checkpoints and event logs are written to.')
tf.app.flags.DEFINE_string(
'eval_dir', '/tmp/eval_log/',
'Directory where event logs are written to.')
tf.app.flags.DEFINE_integer('num_clones', 1,
'Number of model clones to deploy.')
tf.app.flags.DEFINE_boolean('clone_on_cpu', False,
'Use CPUs to deploy clones.')
tf.app.flags.DEFINE_integer('worker_replicas', 1, 'Number of worker replicas.')
tf.app.flags.DEFINE_integer(
'num_ps_tasks', 0,
'The number of parameter servers. If the value is 0, then the parameters '
'are handled locally by the worker.')
tf.app.flags.DEFINE_integer(
'log_every_n_steps', 10,
'The frequency with which logs are print.')
tf.app.flags.DEFINE_integer(
'save_summaries_secs', 600,
'The frequency with which summaries are saved, in seconds.')
tf.app.flags.DEFINE_integer(
'save_interval_secs', 600,
'The frequency with which the model is saved, in seconds.')
tf.app.flags.DEFINE_integer(
'trace_every_n_steps', None,
'The frequency with which the timeline is saved, in seconds.')
tf.app.flags.DEFINE_integer(
'task', 0, 'Task id of the replica running the training.')
tf.app.flags.DEFINE_boolean(
'log_device_placement', False,
"""Whether to log device placement.""")
######################
# Optimization Flags #
######################
tf.app.flags.DEFINE_float(
'weight_decay', 0.00004, 'The weight decay on the model weights.')
tf.app.flags.DEFINE_string(
'optimizer', 'rmsprop',
'The name of the optimizer, one of "adadelta", "adagrad", "adam",'
'"ftrl", "momentum", "sgd" or "rmsprop".')
tf.app.flags.DEFINE_float(
'adadelta_rho', 0.95,
'The decay rate for adadelta.')
tf.app.flags.DEFINE_float(
'adagrad_initial_accumulator_value', 0.1,
'Starting value for the AdaGrad accumulators.')
tf.app.flags.DEFINE_float(
'adam_beta1', 0.9,
'The exponential decay rate for the 1st moment estimates.')
tf.app.flags.DEFINE_float(
'adam_beta2', 0.999,
'The exponential decay rate for the 2nd moment estimates.')
tf.app.flags.DEFINE_float('opt_epsilon', 1.0, 'Epsilon term for the optimizer.')
tf.app.flags.DEFINE_float('ftrl_learning_rate_power', -0.5,
'The learning rate power.')
tf.app.flags.DEFINE_float(
'ftrl_initial_accumulator_value', 0.1,
'Starting value for the FTRL accumulators.')
tf.app.flags.DEFINE_float(
'ftrl_l1', 0.0, 'The FTRL l1 regularization strength.')
tf.app.flags.DEFINE_float(
'ftrl_l2', 0.0, 'The FTRL l2 regularization strength.')
tf.app.flags.DEFINE_float(
'momentum', 0.9,
'The momentum for the MomentumOptimizer and RMSPropOptimizer.')
tf.app.flags.DEFINE_float('rmsprop_momentum', 0.9, 'Momentum.')
tf.app.flags.DEFINE_float('rmsprop_decay', 0.9, 'Decay term for RMSProp.')
#######################
# Learning Rate Flags #
#######################
tf.app.flags.DEFINE_string(
'learning_rate_decay_type',
'exponential',
'Specifies how the learning rate is decayed. One of "fixed", "exponential",'
' "piecewise", or "polynomial"')
tf.app.flags.DEFINE_float('learning_rate', 0.01, 'Initial learning rate.')
tf.app.flags.DEFINE_string(
'learning_rate_steps',
'10', 'Setting the exact learning rate steps when FLAGS.learning_rate is set as 0.')
tf.app.flags.DEFINE_float(
'end_learning_rate', 0.0001,
'The minimal end learning rate used by a polynomial decay learning rate.')
tf.app.flags.DEFINE_float(
'label_smoothing', 0.0, 'The amount of label smoothing.')
tf.app.flags.DEFINE_float(
'learning_rate_decay_factor', 0.94, 'Learning rate decay factor.')
tf.app.flags.DEFINE_string(
'decay_iteration', '10000',
'Number of iterations after which learning rate decays.')
tf.app.flags.DEFINE_bool(
'sync_replicas', False,
'Whether or not to synchronize the replicas during training.')
tf.app.flags.DEFINE_integer(
'replicas_to_aggregate', 1,
'The Number of gradients to collect before updating params.')
tf.app.flags.DEFINE_float(
'moving_average_decay', None,
'The decay to use for the moving average.'
'If left as None, then moving averages are not used.')
tf.app.flags.DEFINE_float(
'grad_clipping', None,
"""Gradient cliping by norm.""")
tf.app.flags.DEFINE_boolean(
'no_decay', False,
"""Whether decay the learning rate of recovered variables.""")
#######################
# Dataset Flags #
#######################
tf.app.flags.DEFINE_string(
'dataset_list', '', 'The list of the dataset to load.')
tf.app.flags.DEFINE_string(
'dataset_dir', None, 'The directory where the dataset files are stored.')
tf.app.flags.DEFINE_integer(
'NUM_CLASSES', 101,
'The number of classes.')
tf.app.flags.DEFINE_integer(
'labels_offset', 0,
'An offset for the labels in the dataset. This flag is primarily used to '
'evaluate the VGG and ResNet architectures which do not use a background '
'class for the ImageNet dataset.')
tf.app.flags.DEFINE_string(
'model_name', 'inception_v3', 'The name of the architecture to train.')
tf.app.flags.DEFINE_string(
'preprocessing_name', None, 'The name of the preprocessing to use. If left '
'as `None`, then the model_name flag is used.')
tf.app.flags.DEFINE_integer(
'batch_size', 32, 'The number of samples in each batch.')
tf.app.flags.DEFINE_integer(
'resize_image_size', 256, 'Train image size')
tf.app.flags.DEFINE_integer(
'train_image_size', 224, 'Train image size')
tf.app.flags.DEFINE_integer(
'max_number_of_steps', None,
'The maximum number of training steps.')
tf.app.flags.DEFINE_integer('top_k', 5,
"""Top k accuracy.""")
tf.app.flags.DEFINE_string(
'feature_dir', '/tmp/tfmodel/',
'Directory where features are written to.')
tf.app.flags.DEFINE_string(
'rnn', 'shuttleNet', 'The list of the dataset to load.')
tf.app.flags.DEFINE_string(
'echocell', 'GRUBlock', 'The list of the dataset to load.')
tf.app.flags.DEFINE_integer(
'num_rnn', 1,
'The Number of rnn layers.')
#####################
# Video Flags #
#####################
tf.app.flags.DEFINE_integer('n_steps', 16,
"""Time steps for LSTM.""")
tf.app.flags.DEFINE_integer('length', 1, """Sample length.""")
tf.app.flags.DEFINE_string('modality', 'None',
"""Modality of data.""")
tf.app.flags.DEFINE_integer('read_stride', 5,
"""Read stride of video frames.""")
tf.app.flags.DEFINE_boolean(
'merge_label', False,
'If output one label for each video.')
#####################
# Fine-Tuning Flags #
#####################
tf.app.flags.DEFINE_string(
'checkpoint_path', None,
'The path to a checkpoint from which to fine-tune.')
tf.app.flags.DEFINE_string(
'npy_weights', None,
'The path to a weights.npy from which to fine-tune.')
tf.app.flags.DEFINE_boolean(
'no_restore_exclude', False,
'Prevent checkpoint_exclude_scopes parameters.')
tf.app.flags.DEFINE_string(
'checkpoint_exclude_scopes', None,
'Comma-separated list of scopes of variables to exclude when restoring '
'from a checkpoint.')
tf.app.flags.DEFINE_string(
'checkpoint_exclude_end_scopes', None,
'Comma-separated list of scopes of variables to exclude when restoring '
'from a checkpoint.')
tf.app.flags.DEFINE_string(
'trainable_scopes', None,
'Comma-separated list of scopes to filter the set of variables to train.'
'By default, None would train all the variables.')
tf.app.flags.DEFINE_boolean(
'ignore_missing_vars', False,
'When restoring a checkpoint would ignore missing variables.')
tf.flags.DEFINE_integer(
"eval_interval_secs", 1200,
"Interval between evaluation runs.")
FLAGS = tf.app.flags.FLAGS
def train():
with tf.Graph().as_default():
######################
# Config model_deploy#
######################
deploy_config = model_deploy.DeploymentConfig(
num_clones=FLAGS.num_clones,
clone_on_cpu=FLAGS.clone_on_cpu,
replica_id=FLAGS.task,
num_replicas=FLAGS.worker_replicas,
num_ps_tasks=FLAGS.num_ps_tasks)
# Create global_step
with tf.device(deploy_config.variables_device()):
global_step = slim.create_global_step()
####################
# Select the network #
####################
network_fn = nets_factory.get_network_fn(
FLAGS.model_name,
num_classes=FLAGS.NUM_CLASSES,
weight_decay=FLAGS.weight_decay,
is_training=True)
#####################################
# Select the preprocessing function #
#####################################
preprocessing_name = FLAGS.preprocessing_name or FLAGS.model_name
image_preprocessing_fn = preprocessing_factory.get_preprocessing(
preprocessing_name,
is_training=True)
##############################################################
# Create a dataset provider that loads data from the dataset #
##############################################################
if hasattr(network_fn, 'rnn_part'):
load_batch_size = FLAGS.batch_size * deploy_config.num_clones
else:
load_batch_size = FLAGS.batch_size
with tf.device(deploy_config.inputs_device()):
dataset_size, images, labels, video_name = async_loader.video_inputs(FLAGS.dataset_list,
FLAGS.dataset_dir, FLAGS.resize_image_size, FLAGS.train_image_size,
load_batch_size, FLAGS.n_steps, FLAGS.modality, FLAGS.read_stride,
image_preprocessing_fn, shuffle=True,
label_from_one=(FLAGS.labels_offset>0),
length1=FLAGS.length, crop=2,
merge_label=FLAGS.merge_label)
labels = slim.one_hot_encoding(
labels, FLAGS.NUM_CLASSES)
if hasattr(network_fn, 'rnn_part'):
assert load_batch_size % FLAGS.n_steps == 0
total_video_num = int(load_batch_size / FLAGS.n_steps)
# Split images and labels for cnn
split_images = tf.split(images, deploy_config.num_clones, 0)
cnn_labels = labels
if FLAGS.merge_label:
cnn_labels = tf.reshape(cnn_labels, [1, -1, FLAGS.NUM_CLASSES])
cnn_labels = tf.tile(cnn_labels, [FLAGS.n_steps, 1, 1])
cnn_labels = tf.reshape(cnn_labels, [-1, FLAGS.NUM_CLASSES])
split_cnn_labels = tf.split(cnn_labels, deploy_config.num_clones, 0)
# Split labels for rnn
if not FLAGS.merge_label:
split_rnn_labels = tf.reshape(labels, [FLAGS.n_steps, total_video_num, FLAGS.NUM_CLASSES])
assert total_video_num % deploy_config.num_clones == 0
split_rnn_labels = tf.split(split_rnn_labels, deploy_config.num_clones, 1)
each_video_num = int(total_video_num / deploy_config.num_clones)
split_rnn_labels = [tf.reshape(label, [FLAGS.n_steps*each_video_num, FLAGS.NUM_CLASSES])
for label in split_rnn_labels]
else:
split_rnn_labels = tf.split(labels, deploy_config.num_clones, 0)
else:
batch_queue = slim.prefetch_queue.prefetch_queue(
[images, labels], capacity=2 * deploy_config.num_clones)
####################
# Define the model #
####################
# Gather initial summaries.
summaries = set(tf.get_collection(tf.GraphKeys.SUMMARIES))
if hasattr(network_fn, 'rnn_part'):
cnn_outputs = []
end_point_outputs = []
def clone_bn_part(split_batchs, split_cnn_labels, cnn_outputs, end_point_outputs):
batch = split_batchs[0]
split_batchs.remove(batch)
logits, end_points = network_fn(batch)
cnn_outputs.append(logits)
end_point_outputs.append(end_points)
labels = split_cnn_labels[0]
split_cnn_labels.remove(labels)
#############################
# Specify the loss function #
#############################
if 'AuxLogits' in end_points:
tf.losses.softmax_cross_entropy(
logits=end_points['AuxLogits'], onehot_labels=labels,
label_smoothing=FLAGS.label_smoothing, weights=0.4, scope='aux_loss')
return end_points
def clone_rnn(cnn_outputs, split_rnn_labels, end_point_outputs):
cnn_output = cnn_outputs[0]
cnn_outputs.remove(cnn_output)
end_point_output = end_point_outputs[0]
end_point_outputs.remove(end_point_output)
labels = split_rnn_labels[0]
split_rnn_labels.remove(labels)
logits, end_points = network_fn.rnn_part(cnn_output)
end_points.update(end_point_output)
#############################
# Specify the loss function #
#############################
tf.losses.softmax_cross_entropy(
logits=logits, onehot_labels=labels, label_smoothing=FLAGS.label_smoothing, weights=1.0)
return end_points
# Run BN part, CNN and RNN should have different labels because of the different sample order
model_deploy.create_clones(deploy_config, clone_bn_part,
[split_images, split_cnn_labels, cnn_outputs, end_point_outputs],
gpu_offset=1)
# Merge on another GPU to avoid transport data back to original GPUs
assert len(model_deploy.get_available_gpus()) > deploy_config.num_clones
with tf.device(deploy_config.clone_device(0)):
# Concat all clones to one tensor
cnn_outputs = tf.concat(values=cnn_outputs, axis=0)
output_shape = cnn_outputs.get_shape().as_list()
# Reshape to expose the video number dimension
cnn_outputs = tf.reshape(cnn_outputs, [FLAGS.n_steps, total_video_num]+output_shape[1:])
# Split in the video number dimension, so that each clone has an input for lstm
cnn_outputs = tf.split(cnn_outputs, deploy_config.num_clones, 1)
# Merge n_steps and video number dimension
cnn_outputs = [tf.reshape(output, [-1]+output_shape[1:]) for output in cnn_outputs]
# Run RNN part on another GPU #deploy_config.num_clones
# clones = model_deploy.create_extra_clones_on_another_gpu(deploy_config, clone_rnn,
# [cnn_outputs, split_rnn_labels, end_point_outputs])
clones = model_deploy.create_clones(deploy_config, clone_rnn,
[cnn_outputs, split_rnn_labels, end_point_outputs],
gpu_offset=1)
else:
def clone_fn(batch_queue):
"""Allows data parallelism by creating multiple clones of network_fn."""
images, labels = batch_queue.dequeue()
logits, end_points = network_fn(images)
#############################
# Specify the loss function #
#############################
if 'AuxLogits' in end_points:
tf.losses.softmax_cross_entropy(
logits=end_points['AuxLogits'], onehot_labels=labels,
label_smoothing=FLAGS.label_smoothing, weights=0.4, scope='aux_loss')
tf.losses.softmax_cross_entropy(
logits=logits, onehot_labels=labels, label_smoothing=FLAGS.label_smoothing, weights=1.0)
return end_points
clones = model_deploy.create_clones(deploy_config, clone_fn, [batch_queue])
first_clone_scope = deploy_config.clone_scope(0)
# Gather update_ops from the first clone. These contain, for example,
# the updates for the batch_norm variables created by network_fn.
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS, first_clone_scope)
# Add summaries for end_points.
end_points = clones[0].outputs
for end_point in end_points:
x = end_points[end_point]
summaries.add(tf.summary.histogram('activations/' + end_point, x))
summaries.add(tf.summary.scalar('sparsity/' + end_point,
tf.nn.zero_fraction(x)))
# Add summaries for losses.
for loss in tf.get_collection(tf.GraphKeys.LOSSES, first_clone_scope):
summaries.add(tf.summary.scalar('losses/%s' % loss.op.name, loss))
#################################
# Configure the moving averages #
#################################
if FLAGS.moving_average_decay:
moving_average_variables = slim.get_model_variables()
variable_averages = tf.train.ExponentialMovingAverage(
FLAGS.moving_average_decay, global_step)
else:
moving_average_variables, variable_averages = None, None
#########################################
# Configure the optimization procedure. #
#########################################
with tf.device(deploy_config.optimizer_device()):
learning_rate = train_util._configure_learning_rate(global_step)
optimizer = train_util._configure_optimizer(learning_rate)
summaries.add(tf.summary.scalar('learning_rate', learning_rate))
if FLAGS.sync_replicas:
# If sync_replicas is enabled, the averaging will be done in the chief
# queue runner.
optimizer = tf.train.SyncReplicasOptimizer(
opt=optimizer,
replicas_to_aggregate=FLAGS.replicas_to_aggregate,
variable_averages=variable_averages,
variables_to_average=moving_average_variables,
total_num_replicas=FLAGS.worker_replicas)
elif FLAGS.moving_average_decay:
# Update ops executed locally by trainer.
update_ops.append(variable_averages.apply(moving_average_variables))
# Variables to train.
variables_to_train = train_util._get_variables_to_train()
# Variables to restore and decay
variables_to_restore = train_util._get_variables_to_restore()
# and returns a train_tensor and summary_op
total_loss, clones_gradients = model_deploy.optimize_clones(
clones,
optimizer,
var_list=variables_to_train,
gate_gradients=optimizer.GATE_OP,
colocate_gradients_with_ops=True)
# Add total_loss to summary.
summaries.add(tf.summary.scalar('total_loss', total_loss))
# Gradient decay and clipping
if not FLAGS.no_decay:
# Set up learning rate decay
lr_mul = {var:0.1 for var in variables_to_restore}
clones_gradients = tf.contrib.slim.learning.multiply_gradients(
clones_gradients, lr_mul)
if FLAGS.grad_clipping is not None:
clones_gradients = tf.contrib.slim.learning.clip_gradient_norms(
clones_gradients, FLAGS.grad_clipping)
# Create gradient updates.
grad_updates = optimizer.apply_gradients(clones_gradients,
global_step=global_step)
update_ops.append(grad_updates)
update_op = tf.group(*update_ops)
train_tensor = control_flow_ops.with_dependencies([update_op], total_loss,
name='train_op')
# Add the summaries from the first clone. These contain the summaries
# created by model_fn and either optimize_clones() or _gather_clone_loss().
summaries |= set(tf.get_collection(tf.GraphKeys.SUMMARIES,
first_clone_scope))
# Merge all summaries together.
summary_op = tf.summary.merge(list(summaries), name='summary_op')
###########################
# Kicks off the training. #
###########################
sess_config = tf.ConfigProto(
allow_soft_placement=True,
log_device_placement=FLAGS.log_device_placement)
slim.learning.train(
train_tensor,
logdir=FLAGS.train_dir,
master=FLAGS.master,
is_chief=(FLAGS.task == 0),
init_fn=train_util._get_init_fn(variables_to_restore),
summary_op=summary_op,
number_of_steps=FLAGS.max_number_of_steps,
log_every_n_steps=FLAGS.log_every_n_steps,
save_summaries_secs=FLAGS.save_summaries_secs,
save_interval_secs=FLAGS.save_interval_secs,
sync_optimizer=optimizer if FLAGS.sync_replicas else None,
trace_every_n_steps=FLAGS.trace_every_n_steps,
session_config=sess_config)
def test_once(test_data_size, top_k_op, sess, names,
batch_size_per_gpu, summary_op, summary_writer,
show_log=False):
print("Testing......")
num_eval_batches = int(
math.ceil(float(test_data_size) / float(batch_size_per_gpu) * float(FLAGS.n_steps)))
correct = 0
count = 0
total = test_data_size
for i in xrange(num_eval_batches):
test_start_time = time.time()
ret, name = sess.run([top_k_op, names])
correct += np.sum(ret)
test_duration = time.time() - test_start_time
count += len(ret)
cur_accuracy = float(correct)*100/count
test_examples_per_sec = float(batch_size_per_gpu) / test_duration
if show_log and i % 100 == 0:
# for n in name:
# print(n)
msg = '{:>6.2f}%, {:>6}/{:<6}'.format(cur_accuracy, count, total)
format_str = ('%s: batch %d, accuracy=%s, (%.1f examples/sec; %.3f '
'sec/batch)')
print (format_str % (datetime.now(), i, msg,
test_examples_per_sec, test_duration))
summary_str = sess.run(summary_op)
summary_writer.add_summary(summary_str, i)
summary_writer.flush()
msg = '{:>6.2f}%, {:>6}/{:<6}'.format(cur_accuracy, count, total)
format_str = ('%s: total batch %d, accuracy=%s, (%.1f examples/sec; %.3f '
'sec/batch)')
print (format_str % (datetime.now(), num_eval_batches, msg,
test_examples_per_sec, test_duration))
summary_str = sess.run(summary_op)
summary_writer.add_summary(summary_str, num_eval_batches+1)
summary_writer.flush()
def test():
# Check training directory.
train_dir = FLAGS.train_dir
if not tf.gfile.IsDirectory(train_dir):
tf.logging.info("Training directory %s not found.", train_dir)
return
# Build the TensorFlow graph.
g = tf.Graph()
with g.as_default():
####################
# Select the network #
####################
network_fn = nets_factory.get_network_fn(
FLAGS.model_name,
num_classes=FLAGS.NUM_CLASSES,
is_training=False)
#####################################
# Select the preprocessing function #
#####################################
preprocessing_name = FLAGS.preprocessing_name or FLAGS.model_name
image_preprocessing_fn = preprocessing_factory.get_preprocessing(
preprocessing_name,
is_training=False)
test_size, test_data, test_label, test_names = async_loader.video_inputs(FLAGS.dataset_list,
FLAGS.dataset_dir, FLAGS.resize_image_size, FLAGS.train_image_size,
FLAGS.batch_size, FLAGS.n_steps, FLAGS.modality, FLAGS.read_stride,
image_preprocessing_fn, shuffle=False,
label_from_one=(FLAGS.labels_offset>0),
length1=FLAGS.length, crop=0,
merge_label=FLAGS.merge_label)
print("Batch size %d"%test_data.get_shape()[0].value)
batch_size_per_gpu = FLAGS.batch_size
global_step_tensor = slim.create_global_step()
# Calculate the gradients for each model tower.
logits, end_points = network_fn(test_data)
if hasattr(network_fn, 'rnn_part'):
logits, end_points_rnn = network_fn.rnn_part(logits)
end_points.update(end_points_rnn)
if not FLAGS.merge_label:
logits = tf.split(logits, FLAGS.n_steps, 0)[-1]
test_label = tf.split(test_label, FLAGS.n_steps, 0)[-1]
top_k_op = tf.nn.in_top_k(logits, test_label, FLAGS.top_k)
summary_op = tf.summary.merge_all()
summary_writer = tf.summary.FileWriter(FLAGS.eval_dir)
if FLAGS.moving_average_decay:
variable_averages = tf.train.ExponentialMovingAverage(
FLAGS.moving_average_decay, global_step_tensor)
variables_to_restore = variable_averages.variables_to_restore(
slim.get_variables())
variables_to_restore[global_step_tensor.op.name] = global_step_tensor
else:
variables_to_restore = slim.get_variables_to_restore()
for var in variables_to_restore:
print("Will restore %s"%(var.op.name))
saver = tf.train.Saver(variables_to_restore)
sv = tf.train.Supervisor(graph=g,
logdir=FLAGS.eval_dir,
summary_op=None,
summary_writer=None,
global_step=None,
saver=None)
g.finalize()
with sv.managed_session(
FLAGS.master, start_standard_services=False, config=None) as sess:
while True:
start = time.time()
tf.logging.info("Starting evaluation at " + time.strftime(
"%Y-%m-%d-%H:%M:%S", time.localtime()))
model_path = tf.train.latest_checkpoint(FLAGS.train_dir)
if not model_path:
tf.logging.info("Skipping evaluation. No checkpoint found in: %s",
FLAGS.train_dir)
else:
# Load model from checkpoint.
tf.logging.info("Loading model from checkpoint: %s", model_path)
saver.restore(sess, model_path)
global_step = tf.train.global_step(sess, global_step_tensor.name)
tf.logging.info("Successfully loaded %s at global step = %d.",
os.path.basename(model_path), global_step)
if global_step > 0:
# Start the queue runners.
sv.start_queue_runners(sess)
# Run evaluation on the latest checkpoint.
try:
test_once(test_size, top_k_op, sess, test_names,
batch_size_per_gpu, summary_op, summary_writer,
show_log=True)
except Exception: # pylint: disable=broad-except
tf.logging.error("Evaluation failed.")
time_to_next_eval = start + FLAGS.eval_interval_secs - time.time()
if time_to_next_eval > 0:
time.sleep(time_to_next_eval)
def async_extract():
# Check training directory.
train_dir = FLAGS.train_dir
if not tf.gfile.IsDirectory(train_dir):
tf.logging.fatal("Training directory %s not found.", train_dir)
return
# Build the TensorFlow graph.
g = tf.Graph()
with g.as_default():
####################
# Select the network #
####################
network_fn = nets_factory.get_network_fn(
FLAGS.model_name,
num_classes=FLAGS.NUM_CLASSES,
is_training=False)
#####################################
# Select the preprocessing function #
#####################################
preprocessing_name = FLAGS.preprocessing_name or FLAGS.model_name
image_preprocessing_fn = preprocessing_factory.get_preprocessing(
preprocessing_name,
is_training=False)
test_size, test_data, test_label, test_names = async_loader.multi_sample_video_inputs(FLAGS.dataset_list,
FLAGS.dataset_dir, FLAGS.batch_size, FLAGS.n_steps,
FLAGS.modality, FLAGS.read_stride,
FLAGS.resize_image_size, FLAGS.train_image_size,
image_preprocessing_fn,
label_from_one=(FLAGS.labels_offset>0),
sample_num=25,
length1=FLAGS.length,
merge_label=FLAGS.merge_label)
print("Batch size %d"%test_data.get_shape()[0].value)
batch_size_per_gpu = FLAGS.batch_size
global_step_tensor = slim.create_global_step()
# Calculate the gradients for each model tower.
predicts, end_points = network_fn(test_data)
if hasattr(network_fn, 'rnn_part'):
predicts, end_points_rnn = network_fn.rnn_part(predicts)
end_points.update(end_points_rnn)
if not FLAGS.merge_label:
predicts = tf.split(predicts, FLAGS.n_steps, 0)[-1]
test_label = tf.split(test_label, FLAGS.n_steps, 0)[-1]
top_k_op = tf.nn.in_top_k(predicts, test_label, FLAGS.top_k)
if FLAGS.moving_average_decay:
variable_averages = tf.train.ExponentialMovingAverage(
FLAGS.moving_average_decay, global_step_tensor)
variables_to_restore = variable_averages.variables_to_restore(
slim.get_variables())
variables_to_restore[global_step_tensor.op.name] = global_step_tensor
else:
variables_to_restore = slim.get_variables_to_restore()
for var in variables_to_restore:
print("Will restore %s"%(var.op.name))
saver = tf.train.Saver(variables_to_restore)
sv = tf.train.Supervisor(graph=g,
logdir=FLAGS.eval_dir,
summary_op=None,
summary_writer=None,
global_step=None,
saver=None)
g.finalize()
tf.logging.info("Starting evaluation at " + time.strftime(
"%Y-%m-%d-%H:%M:%S", time.localtime()))
model_path = tf.train.latest_checkpoint(FLAGS.train_dir)
if not model_path:
tf.logging.info("Skipping evaluation. No checkpoint found in: %s",
FLAGS.train_dir)
else:
with sv.managed_session(
FLAGS.master, start_standard_services=False, config=None) as sess:
# Load model from checkpoint.
tf.logging.info("Loading model from checkpoint: %s", model_path)
saver.restore(sess, model_path)
global_step = tf.train.global_step(sess, global_step_tensor.name)
tf.logging.info("Successfully loaded %s at global step = %d.",
os.path.basename(model_path), global_step)
# Start the queue runners.
sv.start_queue_runners(sess)
# Run evaluation on the latest checkpoint.
print("Extracting......")
num_eval_batches = int(
math.ceil(float(test_size) / float(batch_size_per_gpu) * float(FLAGS.n_steps)))
assert (num_eval_batches*batch_size_per_gpu/FLAGS.n_steps) == test_size
correct = 0
count = 0
for i in xrange(num_eval_batches):
test_start_time = time.time()
ret, pre, name = sess.run([top_k_op, predicts, test_names])
correct += np.sum(ret)
for b in xrange(pre.shape[0]):
fp = open('%s/%s'%(FLAGS.feature_dir, os.path.basename(name[b])), 'a')
for f in xrange(pre.shape[1]):
fp.write('%f '%pre[b, f])
fp.write('\n')
fp.close()
test_duration = time.time() - test_start_time
count += len(ret)
cur_accuracy = float(correct)*100/count
test_examples_per_sec = float(batch_size_per_gpu) / test_duration
if i % 100 == 0:
msg = '{:>6.2f}%, {:>6}/{:<6}'.format(cur_accuracy, count, test_size)
format_str = ('%s: batch %d, accuracy=%s, (%.1f examples/sec; %.3f '
'sec/batch)')
print (format_str % (datetime.now(), i, msg,
test_examples_per_sec, test_duration))
msg = '{:>6.2f}%, {:>6}/{:<6}'.format(cur_accuracy, count, test_size)
format_str = ('%s: total batch %d, accuracy=%s, (%.1f examples/sec; %.3f '
'sec/batch)')
print (format_str % (datetime.now(), num_eval_batches, msg,
test_examples_per_sec, test_duration))
def main(_):
if not FLAGS.dataset_dir:
raise ValueError('You must supply the dataset directory with --dataset_dir')
tf.logging.set_verbosity(tf.logging.INFO)
if FLAGS.mode == 'train':
train()
elif FLAGS.mode == 'test':
test()
else:
async_extract()
if __name__ == '__main__':
tf.app.run()