forked from XunGuangxu/CorNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocess.py
55 lines (46 loc) · 2.43 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import os
import re
import click
import numpy as np
from nltk.tokenize import word_tokenize
from tqdm import tqdm
from logzero import logger
from deepxml.data_utils import build_vocab, convert_to_binary
def tokenize(sentence: str, sep='/SEP/'):
# We added a /SEP/ symbol between titles and descriptions such as Amazon datasets.
return [token.lower() if token != sep else token for token in word_tokenize(sentence)
if len(re.sub(r'[^\w]', '', token)) > 0]
@click.command()
@click.option('--text-path', type=click.Path(exists=True), help='Path of text.')
@click.option('--tokenized-path', type=click.Path(), default=None, help='Path of tokenized text.')
@click.option('--label-path', type=click.Path(exists=True), default=None, help='Path of labels.')
@click.option('--vocab-path', type=click.Path(), default=None,
help='Path of vocab, if it doesn\'t exit, build one and save it.')
@click.option('--emb-path', type=click.Path(), default=None, help='Path of word embedding.')
@click.option('--w2v-model', type=click.Path(), default=None, help='Path of Gensim Word2Vec Model.')
@click.option('--vocab-size', type=click.INT, default=500000, help='Size of vocab.')
@click.option('--max-len', type=click.INT, default=500, help='Truncated length.')
def main(text_path, tokenized_path, label_path, vocab_path, emb_path, w2v_model, vocab_size, max_len):
if tokenized_path is not None:
logger.info(F'Tokenizing Text. {text_path}')
with open(text_path) as fp, open(tokenized_path, 'w') as fout:
for line in tqdm(fp, desc='Tokenizing'):
print(*tokenize(line), file=fout)
text_path = tokenized_path
if not os.path.exists(vocab_path):
logger.info(F'Building Vocab. {text_path}')
with open(text_path) as fp:
vocab, emb_init = build_vocab(fp, w2v_model, vocab_size=vocab_size)
np.save(vocab_path, vocab)
np.save(emb_path, emb_init)
vocab = {word: i for i, word in enumerate(np.load(vocab_path))}
logger.info(F'Vocab Size: {len(vocab)}')
logger.info(F'Getting Dataset: {text_path} Max Length: {max_len}')
texts, labels = convert_to_binary(text_path, label_path, max_len, vocab)
logger.info(F'Size of Samples: {len(texts)}')
np.save(os.path.splitext(text_path)[0], texts)
if labels is not None:
assert len(texts) == len(labels)
np.save(os.path.splitext(label_path)[0], labels)
if __name__ == '__main__':
main()