-
Notifications
You must be signed in to change notification settings - Fork 54
/
MotionDirector_train.py
1048 lines (840 loc) · 39.8 KB
/
MotionDirector_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import argparse
import datetime
import logging
import inspect
import math
import os
import random
import gc
import copy
from typing import Dict, Optional, Tuple
from omegaconf import OmegaConf
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
import diffusers
import transformers
from torchvision import transforms
from tqdm.auto import tqdm
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from models.unet_3d_condition import UNet3DConditionModel
from diffusers.models import AutoencoderKL
from diffusers import DDIMScheduler, TextToVideoSDPipeline
from diffusers.optimization import get_scheduler
from diffusers.utils.import_utils import is_xformers_available
from diffusers.models.attention_processor import AttnProcessor2_0, Attention
from diffusers.models.attention import BasicTransformerBlock
from transformers import CLIPTextModel, CLIPTokenizer
from transformers.models.clip.modeling_clip import CLIPEncoder
from utils.dataset import VideoJsonDataset, SingleVideoDataset, \
ImageDataset, VideoFolderDataset, CachedDataset
from einops import rearrange, repeat
from utils.lora_handler import LoraHandler
from utils.lora import extract_lora_child_module
from utils.ddim_utils import ddim_inversion
import imageio
import numpy as np
already_printed_trainables = False
logger = get_logger(__name__, log_level="INFO")
def create_logging(logging, logger, accelerator):
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
def accelerate_set_verbose(accelerator):
if accelerator.is_local_main_process:
transformers.utils.logging.set_verbosity_warning()
diffusers.utils.logging.set_verbosity_info()
else:
transformers.utils.logging.set_verbosity_error()
diffusers.utils.logging.set_verbosity_error()
def get_train_dataset(dataset_types, train_data, tokenizer):
train_datasets = []
# Loop through all available datasets, get the name, then add to list of data to process.
for DataSet in [VideoJsonDataset, SingleVideoDataset, ImageDataset, VideoFolderDataset]:
for dataset in dataset_types:
if dataset == DataSet.__getname__():
train_datasets.append(DataSet(**train_data, tokenizer=tokenizer))
if len(train_datasets) > 0:
return train_datasets
else:
raise ValueError("Dataset type not found: 'json', 'single_video', 'folder', 'image'")
def extend_datasets(datasets, dataset_items, extend=False):
biggest_data_len = max(x.__len__() for x in datasets)
extended = []
for dataset in datasets:
if dataset.__len__() == 0:
del dataset
continue
if dataset.__len__() < biggest_data_len:
for item in dataset_items:
if extend and item not in extended and hasattr(dataset, item):
print(f"Extending {item}")
value = getattr(dataset, item)
value *= biggest_data_len
value = value[:biggest_data_len]
setattr(dataset, item, value)
print(f"New {item} dataset length: {dataset.__len__()}")
extended.append(item)
def export_to_video(video_frames, output_video_path, fps):
video_writer = imageio.get_writer(output_video_path, fps=fps)
for img in video_frames:
video_writer.append_data(np.array(img))
video_writer.close()
def create_output_folders(output_dir, config):
now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
out_dir = os.path.join(output_dir, f"train_{now}")
os.makedirs(out_dir, exist_ok=True)
os.makedirs(f"{out_dir}/samples", exist_ok=True)
# OmegaConf.save(config, os.path.join(out_dir, 'config.yaml'))
return out_dir
def load_primary_models(pretrained_model_path):
noise_scheduler = DDIMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler")
tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder")
vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae")
unet = UNet3DConditionModel.from_pretrained(pretrained_model_path, subfolder="unet")
return noise_scheduler, tokenizer, text_encoder, vae, unet
def unet_and_text_g_c(unet, text_encoder, unet_enable, text_enable):
unet._set_gradient_checkpointing(value=unet_enable)
text_encoder._set_gradient_checkpointing(CLIPEncoder, value=text_enable)
def freeze_models(models_to_freeze):
for model in models_to_freeze:
if model is not None: model.requires_grad_(False)
def is_attn(name):
return ('attn1' or 'attn2' == name.split('.')[-1])
def set_processors(attentions):
for attn in attentions: attn.set_processor(AttnProcessor2_0())
def set_torch_2_attn(unet):
optim_count = 0
for name, module in unet.named_modules():
if is_attn(name):
if isinstance(module, torch.nn.ModuleList):
for m in module:
if isinstance(m, BasicTransformerBlock):
set_processors([m.attn1, m.attn2])
optim_count += 1
if optim_count > 0:
print(f"{optim_count} Attention layers using Scaled Dot Product Attention.")
def handle_memory_attention(enable_xformers_memory_efficient_attention, enable_torch_2_attn, unet):
try:
is_torch_2 = hasattr(F, 'scaled_dot_product_attention')
enable_torch_2 = is_torch_2 and enable_torch_2_attn
if enable_xformers_memory_efficient_attention and not enable_torch_2:
if is_xformers_available():
from xformers.ops import MemoryEfficientAttentionFlashAttentionOp
unet.enable_xformers_memory_efficient_attention(attention_op=MemoryEfficientAttentionFlashAttentionOp)
else:
raise ValueError("xformers is not available. Make sure it is installed correctly")
if enable_torch_2:
set_torch_2_attn(unet)
except:
print("Could not enable memory efficient attention for xformers or Torch 2.0.")
def param_optim(model, condition, extra_params=None, is_lora=False, negation=None):
extra_params = extra_params if len(extra_params.keys()) > 0 else None
return {
"model": model,
"condition": condition,
'extra_params': extra_params,
'is_lora': is_lora,
"negation": negation
}
def create_optim_params(name='param', params=None, lr=5e-6, extra_params=None):
params = {
"name": name,
"params": params,
"lr": lr
}
if extra_params is not None:
for k, v in extra_params.items():
params[k] = v
return params
def negate_params(name, negation):
# We have to do this if we are co-training with LoRA.
# This ensures that parameter groups aren't duplicated.
if negation is None: return False
for n in negation:
if n in name and 'temp' not in name:
return True
return False
def create_optimizer_params(model_list, lr):
import itertools
optimizer_params = []
for optim in model_list:
model, condition, extra_params, is_lora, negation = optim.values()
# Check if we are doing LoRA training.
if is_lora and condition and isinstance(model, list):
params = create_optim_params(
params=itertools.chain(*model),
extra_params=extra_params
)
optimizer_params.append(params)
continue
if is_lora and condition and not isinstance(model, list):
for n, p in model.named_parameters():
if 'lora' in n:
params = create_optim_params(n, p, lr, extra_params)
optimizer_params.append(params)
continue
# If this is true, we can train it.
if condition:
for n, p in model.named_parameters():
should_negate = 'lora' in n and not is_lora
if should_negate: continue
params = create_optim_params(n, p, lr, extra_params)
optimizer_params.append(params)
return optimizer_params
def get_optimizer(use_8bit_adam):
if use_8bit_adam:
try:
import bitsandbytes as bnb
except ImportError:
raise ImportError(
"Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`"
)
return bnb.optim.AdamW8bit
else:
return torch.optim.AdamW
def is_mixed_precision(accelerator):
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
return weight_dtype
def cast_to_gpu_and_type(model_list, accelerator, weight_dtype):
for model in model_list:
if model is not None: model.to(accelerator.device, dtype=weight_dtype)
def inverse_video(pipe, latents, num_steps):
ddim_inv_scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
ddim_inv_scheduler.set_timesteps(num_steps)
ddim_inv_latent = ddim_inversion(
pipe, ddim_inv_scheduler, video_latent=latents.to(pipe.device),
num_inv_steps=num_steps, prompt="")[-1]
return ddim_inv_latent
def handle_cache_latents(
should_cache,
output_dir,
train_dataloader,
train_batch_size,
vae,
unet,
pretrained_model_path,
noise_prior,
cached_latent_dir=None,
):
# Cache latents by storing them in VRAM.
# Speeds up training and saves memory by not encoding during the train loop.
if not should_cache: return None
vae.to('cuda', dtype=torch.float16)
vae.enable_slicing()
pipe = TextToVideoSDPipeline.from_pretrained(
pretrained_model_path,
vae=vae,
unet=copy.deepcopy(unet).to('cuda', dtype=torch.float16)
)
pipe.text_encoder.to('cuda', dtype=torch.float16)
cached_latent_dir = (
os.path.abspath(cached_latent_dir) if cached_latent_dir is not None else None
)
if cached_latent_dir is None:
cache_save_dir = f"{output_dir}/cached_latents"
os.makedirs(cache_save_dir, exist_ok=True)
for i, batch in enumerate(tqdm(train_dataloader, desc="Caching Latents.")):
save_name = f"cached_{i}"
full_out_path = f"{cache_save_dir}/{save_name}.pt"
pixel_values = batch['pixel_values'].to('cuda', dtype=torch.float16)
batch['latents'] = tensor_to_vae_latent(pixel_values, vae)
if noise_prior > 0.:
batch['inversion_noise'] = inverse_video(pipe, batch['latents'], 50)
for k, v in batch.items(): batch[k] = v[0]
torch.save(batch, full_out_path)
del pixel_values
del batch
# We do this to avoid fragmentation from casting latents between devices.
torch.cuda.empty_cache()
else:
cache_save_dir = cached_latent_dir
return torch.utils.data.DataLoader(
CachedDataset(cache_dir=cache_save_dir),
batch_size=train_batch_size,
shuffle=False,
num_workers=0
)
def handle_trainable_modules(model, trainable_modules=None, is_enabled=True, negation=None):
global already_printed_trainables
# This can most definitely be refactored :-)
unfrozen_params = 0
if trainable_modules is not None:
for name, module in model.named_modules():
for tm in tuple(trainable_modules):
if tm == 'all':
model.requires_grad_(is_enabled)
unfrozen_params = len(list(model.parameters()))
break
if tm in name and 'lora' not in name:
for m in module.parameters():
m.requires_grad_(is_enabled)
if is_enabled: unfrozen_params += 1
if unfrozen_params > 0 and not already_printed_trainables:
already_printed_trainables = True
print(f"{unfrozen_params} params have been unfrozen for training.")
def tensor_to_vae_latent(t, vae):
video_length = t.shape[1]
t = rearrange(t, "b f c h w -> (b f) c h w")
latents = vae.encode(t).latent_dist.sample()
latents = rearrange(latents, "(b f) c h w -> b c f h w", f=video_length)
latents = latents * 0.18215
return latents
def sample_noise(latents, noise_strength, use_offset_noise=False):
b, c, f, *_ = latents.shape
noise_latents = torch.randn_like(latents, device=latents.device)
if use_offset_noise:
offset_noise = torch.randn(b, c, f, 1, 1, device=latents.device)
noise_latents = noise_latents + noise_strength * offset_noise
return noise_latents
def enforce_zero_terminal_snr(betas):
"""
Corrects noise in diffusion schedulers.
From: Common Diffusion Noise Schedules and Sample Steps are Flawed
https://arxiv.org/pdf/2305.08891.pdf
"""
# Convert betas to alphas_bar_sqrt
alphas = 1 - betas
alphas_bar = alphas.cumprod(0)
alphas_bar_sqrt = alphas_bar.sqrt()
# Store old values.
alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()
# Shift so the last timestep is zero.
alphas_bar_sqrt -= alphas_bar_sqrt_T
# Scale so the first timestep is back to the old value.
alphas_bar_sqrt *= alphas_bar_sqrt_0 / (
alphas_bar_sqrt_0 - alphas_bar_sqrt_T
)
# Convert alphas_bar_sqrt to betas
alphas_bar = alphas_bar_sqrt ** 2
alphas = alphas_bar[1:] / alphas_bar[:-1]
alphas = torch.cat([alphas_bar[0:1], alphas])
betas = 1 - alphas
return betas
def should_sample(global_step, validation_steps, validation_data):
return global_step % validation_steps == 0 and validation_data.sample_preview
def save_pipe(
path,
global_step,
accelerator,
unet,
text_encoder,
vae,
output_dir,
lora_manager_spatial: LoraHandler,
lora_manager_temporal: LoraHandler,
unet_target_replace_module=None,
text_target_replace_module=None,
is_checkpoint=False,
save_pretrained_model=True
):
if is_checkpoint:
save_path = os.path.join(output_dir, f"checkpoint-{global_step}")
os.makedirs(save_path, exist_ok=True)
else:
save_path = output_dir
# Save the dtypes so we can continue training at the same precision.
u_dtype, t_dtype, v_dtype = unet.dtype, text_encoder.dtype, vae.dtype
# Copy the model without creating a reference to it. This allows keeping the state of our lora training if enabled.
unet_out = copy.deepcopy(accelerator.unwrap_model(unet.cpu(), keep_fp32_wrapper=False))
text_encoder_out = copy.deepcopy(accelerator.unwrap_model(text_encoder.cpu(), keep_fp32_wrapper=False))
pipeline = TextToVideoSDPipeline.from_pretrained(
path,
unet=unet_out,
text_encoder=text_encoder_out,
vae=vae,
).to(torch_dtype=torch.float32)
lora_manager_spatial.save_lora_weights(model=copy.deepcopy(pipeline), save_path=save_path+'/spatial', step=global_step)
if lora_manager_temporal is not None:
lora_manager_temporal.save_lora_weights(model=copy.deepcopy(pipeline), save_path=save_path+'/temporal', step=global_step)
if save_pretrained_model:
pipeline.save_pretrained(save_path)
if is_checkpoint:
unet, text_encoder = accelerator.prepare(unet, text_encoder)
models_to_cast_back = [(unet, u_dtype), (text_encoder, t_dtype), (vae, v_dtype)]
[x[0].to(accelerator.device, dtype=x[1]) for x in models_to_cast_back]
logger.info(f"Saved model at {save_path} on step {global_step}")
del pipeline
del unet_out
del text_encoder_out
torch.cuda.empty_cache()
gc.collect()
def main(
pretrained_model_path: str,
output_dir: str,
train_data: Dict,
validation_data: Dict,
single_spatial_lora: bool = False,
train_temporal_lora: bool = True,
random_hflip_img: float = -1,
extra_train_data: list = [],
dataset_types: Tuple[str] = ('json'),
validation_steps: int = 100,
trainable_modules: Tuple[str] = None, # Eg: ("attn1", "attn2")
extra_unet_params=None,
train_batch_size: int = 1,
max_train_steps: int = 500,
learning_rate: float = 5e-5,
lr_scheduler: str = "constant",
lr_warmup_steps: int = 0,
adam_beta1: float = 0.9,
adam_beta2: float = 0.999,
adam_weight_decay: float = 1e-2,
adam_epsilon: float = 1e-08,
gradient_accumulation_steps: int = 1,
gradient_checkpointing: bool = False,
text_encoder_gradient_checkpointing: bool = False,
checkpointing_steps: int = 500,
resume_from_checkpoint: Optional[str] = None,
resume_step: Optional[int] = None,
mixed_precision: Optional[str] = "fp16",
use_8bit_adam: bool = False,
enable_xformers_memory_efficient_attention: bool = True,
enable_torch_2_attn: bool = False,
seed: Optional[int] = None,
use_offset_noise: bool = False,
rescale_schedule: bool = False,
offset_noise_strength: float = 0.1,
extend_dataset: bool = False,
cache_latents: bool = False,
cached_latent_dir=None,
use_unet_lora: bool = False,
unet_lora_modules: Tuple[str] = [],
text_encoder_lora_modules: Tuple[str] = [],
save_pretrained_model: bool = True,
lora_rank: int = 16,
lora_path: str = '',
lora_unet_dropout: float = 0.1,
logger_type: str = 'tensorboard',
**kwargs
):
*_, config = inspect.getargvalues(inspect.currentframe())
accelerator = Accelerator(
gradient_accumulation_steps=gradient_accumulation_steps,
mixed_precision=mixed_precision,
log_with=logger_type,
project_dir=output_dir
)
# Make one log on every process with the configuration for debugging.
create_logging(logging, logger, accelerator)
# Initialize accelerate, transformers, and diffusers warnings
accelerate_set_verbose(accelerator)
# Handle the output folder creation
if accelerator.is_main_process:
output_dir = create_output_folders(output_dir, config)
# Load scheduler, tokenizer and models.
noise_scheduler, tokenizer, text_encoder, vae, unet = load_primary_models(pretrained_model_path)
# Freeze any necessary models
freeze_models([vae, text_encoder, unet])
# Enable xformers if available
handle_memory_attention(enable_xformers_memory_efficient_attention, enable_torch_2_attn, unet)
# Initialize the optimizer
optimizer_cls = get_optimizer(use_8bit_adam)
# Get the training dataset based on types (json, single_video, image)
train_datasets = get_train_dataset(dataset_types, train_data, tokenizer)
# If you have extra train data, you can add a list of however many you would like.
# Eg: extra_train_data: [{: {dataset_types, train_data: {etc...}}}]
try:
if extra_train_data is not None and len(extra_train_data) > 0:
for dataset in extra_train_data:
d_t, t_d = dataset['dataset_types'], dataset['train_data']
train_datasets += get_train_dataset(d_t, t_d, tokenizer)
except Exception as e:
print(f"Could not process extra train datasets due to an error : {e}")
# Extend datasets that are less than the greatest one. This allows for more balanced training.
attrs = ['train_data', 'frames', 'image_dir', 'video_files']
extend_datasets(train_datasets, attrs, extend=extend_dataset)
# Process one dataset
if len(train_datasets) == 1:
train_dataset = train_datasets[0]
# Process many datasets
else:
train_dataset = torch.utils.data.ConcatDataset(train_datasets)
# Create parameters to optimize over with a condition (if "condition" is true, optimize it)
extra_unet_params = extra_unet_params if extra_unet_params is not None else {}
extra_text_encoder_params = extra_unet_params if extra_unet_params is not None else {}
# Temporal LoRA
if train_temporal_lora:
# one temporal lora
lora_manager_temporal = LoraHandler(use_unet_lora=use_unet_lora, unet_replace_modules=["TransformerTemporalModel"])
unet_lora_params_temporal, unet_negation_temporal = lora_manager_temporal.add_lora_to_model(
use_unet_lora, unet, lora_manager_temporal.unet_replace_modules, lora_unet_dropout,
lora_path + '/temporal/lora/', r=lora_rank)
optimizer_temporal = optimizer_cls(
create_optimizer_params([param_optim(unet_lora_params_temporal, use_unet_lora, is_lora=True,
extra_params={**{"lr": learning_rate}, **extra_text_encoder_params}
)], learning_rate),
lr=learning_rate,
betas=(adam_beta1, adam_beta2),
weight_decay=adam_weight_decay,
eps=adam_epsilon,
)
lr_scheduler_temporal = get_scheduler(
lr_scheduler,
optimizer=optimizer_temporal,
num_warmup_steps=lr_warmup_steps * gradient_accumulation_steps,
num_training_steps=max_train_steps * gradient_accumulation_steps,
)
else:
lora_manager_temporal = None
unet_lora_params_temporal, unet_negation_temporal = [], []
optimizer_temporal = None
lr_scheduler_temporal = None
# Spatial LoRAs
if single_spatial_lora:
spatial_lora_num = 1
else:
# one spatial lora for each video
spatial_lora_num = train_dataset.__len__()
lora_managers_spatial = []
unet_lora_params_spatial_list = []
optimizer_spatial_list = []
lr_scheduler_spatial_list = []
for i in range(spatial_lora_num):
lora_manager_spatial = LoraHandler(use_unet_lora=use_unet_lora, unet_replace_modules=["Transformer2DModel"])
lora_managers_spatial.append(lora_manager_spatial)
unet_lora_params_spatial, unet_negation_spatial = lora_manager_spatial.add_lora_to_model(
use_unet_lora, unet, lora_manager_spatial.unet_replace_modules, lora_unet_dropout,
lora_path + '/spatial/lora/', r=lora_rank)
unet_lora_params_spatial_list.append(unet_lora_params_spatial)
optimizer_spatial = optimizer_cls(
create_optimizer_params([param_optim(unet_lora_params_spatial, use_unet_lora, is_lora=True,
extra_params={**{"lr": learning_rate}, **extra_text_encoder_params}
)], learning_rate),
lr=learning_rate,
betas=(adam_beta1, adam_beta2),
weight_decay=adam_weight_decay,
eps=adam_epsilon,
)
optimizer_spatial_list.append(optimizer_spatial)
# Scheduler
lr_scheduler_spatial = get_scheduler(
lr_scheduler,
optimizer=optimizer_spatial,
num_warmup_steps=lr_warmup_steps * gradient_accumulation_steps,
num_training_steps=max_train_steps * gradient_accumulation_steps,
)
lr_scheduler_spatial_list.append(lr_scheduler_spatial)
unet_negation_all = unet_negation_spatial + unet_negation_temporal
# DataLoaders creation:
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
batch_size=train_batch_size,
shuffle=False
)
# Latents caching
cached_data_loader = handle_cache_latents(
cache_latents,
output_dir,
train_dataloader,
train_batch_size,
vae,
unet,
pretrained_model_path,
validation_data.noise_prior,
cached_latent_dir,
)
if cached_data_loader is not None:
train_dataloader = cached_data_loader
# Prepare everything with our `accelerator`.
unet, optimizer_spatial_list, optimizer_temporal, train_dataloader, lr_scheduler_spatial_list, lr_scheduler_temporal, text_encoder = accelerator.prepare(
unet,
optimizer_spatial_list, optimizer_temporal,
train_dataloader,
lr_scheduler_spatial_list, lr_scheduler_temporal,
text_encoder
)
# Use Gradient Checkpointing if enabled.
unet_and_text_g_c(
unet,
text_encoder,
gradient_checkpointing,
text_encoder_gradient_checkpointing
)
# Enable VAE slicing to save memory.
vae.enable_slicing()
# For mixed precision training we cast the text_encoder and vae weights to half-precision
# as these models are only used for inference, keeping weights in full precision is not required.
weight_dtype = is_mixed_precision(accelerator)
# Move text encoders, and VAE to GPU
models_to_cast = [text_encoder, vae]
cast_to_gpu_and_type(models_to_cast, accelerator, weight_dtype)
# Fix noise schedules to predcit light and dark areas if available.
if not use_offset_noise and rescale_schedule:
noise_scheduler.betas = enforce_zero_terminal_snr(noise_scheduler.betas)
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / gradient_accumulation_steps)
# Afterwards we recalculate our number of training epochs
num_train_epochs = math.ceil(max_train_steps / num_update_steps_per_epoch)
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if accelerator.is_main_process:
accelerator.init_trackers("text2video-fine-tune")
# Train!
total_batch_size = train_batch_size * accelerator.num_processes * gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {max_train_steps}")
global_step = 0
first_epoch = 0
# Only show the progress bar once on each machine.
progress_bar = tqdm(range(global_step, max_train_steps), disable=not accelerator.is_local_main_process)
progress_bar.set_description("Steps")
def finetune_unet(batch, step, mask_spatial_lora=False, mask_temporal_lora=False):
nonlocal use_offset_noise
nonlocal rescale_schedule
# Unfreeze UNET Layers
if global_step == 0:
already_printed_trainables = False
unet.train()
handle_trainable_modules(
unet,
trainable_modules,
is_enabled=True,
negation=unet_negation_all
)
# Convert videos to latent space
if not cache_latents:
latents = tensor_to_vae_latent(batch["pixel_values"], vae)
else:
latents = batch["latents"]
# Sample noise that we'll add to the latents
use_offset_noise = use_offset_noise and not rescale_schedule
noise = sample_noise(latents, offset_noise_strength, use_offset_noise)
bsz = latents.shape[0]
# Sample a random timestep for each video
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device)
timesteps = timesteps.long()
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
# *Potentially* Fixes gradient checkpointing training.
# See: https://github.com/prigoyal/pytorch_memonger/blob/master/tutorial/Checkpointing_for_PyTorch_models.ipynb
if kwargs.get('eval_train', False):
unet.eval()
text_encoder.eval()
# Encode text embeddings
token_ids = batch['prompt_ids']
encoder_hidden_states = text_encoder(token_ids)[0]
detached_encoder_state = encoder_hidden_states.clone().detach()
# Get the target for loss depending on the prediction type
if noise_scheduler.config.prediction_type == "epsilon":
target = noise
elif noise_scheduler.config.prediction_type == "v_prediction":
target = noise_scheduler.get_velocity(latents, noise, timesteps)
else:
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
encoder_hidden_states = detached_encoder_state
if mask_spatial_lora:
loras = extract_lora_child_module(unet, target_replace_module=["Transformer2DModel"])
for lora_i in loras:
lora_i.scale = 0.
loss_spatial = None
else:
loras = extract_lora_child_module(unet, target_replace_module=["Transformer2DModel"])
if spatial_lora_num == 1:
for lora_i in loras:
lora_i.scale = 1.
else:
for lora_i in loras:
lora_i.scale = 0.
for lora_idx in range(0, len(loras), spatial_lora_num):
loras[lora_idx + step].scale = 1.
loras = extract_lora_child_module(unet, target_replace_module=["TransformerTemporalModel"])
if len(loras) > 0:
for lora_i in loras:
lora_i.scale = 0.
ran_idx = torch.randint(0, noisy_latents.shape[2], (1,)).item()
if random.uniform(0, 1) < random_hflip_img:
pixel_values_spatial = transforms.functional.hflip(
batch["pixel_values"][:, ran_idx, :, :, :]).unsqueeze(1)
latents_spatial = tensor_to_vae_latent(pixel_values_spatial, vae)
noise_spatial = sample_noise(latents_spatial, offset_noise_strength, use_offset_noise)
noisy_latents_input = noise_scheduler.add_noise(latents_spatial, noise_spatial, timesteps)
target_spatial = noise_spatial
model_pred_spatial = unet(noisy_latents_input, timesteps,
encoder_hidden_states=encoder_hidden_states).sample
loss_spatial = F.mse_loss(model_pred_spatial[:, :, 0, :, :].float(),
target_spatial[:, :, 0, :, :].float(), reduction="mean")
else:
noisy_latents_input = noisy_latents[:, :, ran_idx, :, :]
target_spatial = target[:, :, ran_idx, :, :]
model_pred_spatial = unet(noisy_latents_input.unsqueeze(2), timesteps,
encoder_hidden_states=encoder_hidden_states).sample
loss_spatial = F.mse_loss(model_pred_spatial[:, :, 0, :, :].float(),
target_spatial.float(), reduction="mean")
if mask_temporal_lora:
loras = extract_lora_child_module(unet, target_replace_module=["TransformerTemporalModel"])
for lora_i in loras:
lora_i.scale = 0.
loss_temporal = None
else:
loras = extract_lora_child_module(unet, target_replace_module=["TransformerTemporalModel"])
for lora_i in loras:
lora_i.scale = 1.
model_pred = unet(noisy_latents, timesteps, encoder_hidden_states=encoder_hidden_states).sample
loss_temporal = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
beta = 1
alpha = (beta ** 2 + 1) ** 0.5
ran_idx = torch.randint(0, model_pred.shape[2], (1,)).item()
model_pred_decent = alpha * model_pred - beta * model_pred[:, :, ran_idx, :, :].unsqueeze(2)
target_decent = alpha * target - beta * target[:, :, ran_idx, :, :].unsqueeze(2)
loss_ad_temporal = F.mse_loss(model_pred_decent.float(), target_decent.float(), reduction="mean")
loss_temporal = loss_temporal + loss_ad_temporal
return loss_spatial, loss_temporal, latents, noise
for epoch in range(first_epoch, num_train_epochs):
train_loss_spatial = 0.0
train_loss_temporal = 0.0
for step, batch in enumerate(train_dataloader):
# Skip steps until we reach the resumed step
if resume_from_checkpoint and epoch == first_epoch and step < resume_step:
if step % gradient_accumulation_steps == 0:
progress_bar.update(1)
continue
with accelerator.accumulate(unet), accelerator.accumulate(text_encoder):
text_prompt = batch['text_prompt'][0]
for optimizer_spatial in optimizer_spatial_list:
optimizer_spatial.zero_grad(set_to_none=True)
if optimizer_temporal is not None:
optimizer_temporal.zero_grad(set_to_none=True)
if train_temporal_lora:
mask_temporal_lora = False
else:
mask_temporal_lora = True
mask_spatial_lora = random.uniform(0, 1) < 0.2 and not mask_temporal_lora
with accelerator.autocast():
loss_spatial, loss_temporal, latents, init_noise = finetune_unet(batch, step, mask_spatial_lora=mask_spatial_lora, mask_temporal_lora=mask_temporal_lora)
# Gather the losses across all processes for logging (if we use distributed training).
if not mask_spatial_lora:
avg_loss_spatial = accelerator.gather(loss_spatial.repeat(train_batch_size)).mean()
train_loss_spatial += avg_loss_spatial.item() / gradient_accumulation_steps
if not mask_temporal_lora and train_temporal_lora:
avg_loss_temporal = accelerator.gather(loss_temporal.repeat(train_batch_size)).mean()
train_loss_temporal += avg_loss_temporal.item() / gradient_accumulation_steps
# Backpropagate
if not mask_spatial_lora:
accelerator.backward(loss_spatial, retain_graph=True)
if spatial_lora_num == 1:
optimizer_spatial_list[0].step()
else:
optimizer_spatial_list[step].step()
if not mask_temporal_lora and train_temporal_lora:
accelerator.backward(loss_temporal)
optimizer_temporal.step()
if spatial_lora_num == 1:
lr_scheduler_spatial_list[0].step()
else:
lr_scheduler_spatial_list[step].step()
if lr_scheduler_temporal is not None:
lr_scheduler_temporal.step()
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
accelerator.log({"train_loss": train_loss_temporal}, step=global_step)
train_loss_temporal = 0.0
if global_step % checkpointing_steps == 0 and global_step > 0:
save_pipe(
pretrained_model_path,
global_step,
accelerator,
unet,
text_encoder,
vae,
output_dir,
lora_manager_spatial,
lora_manager_temporal,
unet_lora_modules,
text_encoder_lora_modules,
is_checkpoint=True,
save_pretrained_model=save_pretrained_model
)
if should_sample(global_step, validation_steps, validation_data):
if accelerator.is_main_process:
with accelerator.autocast():
unet.eval()
text_encoder.eval()
unet_and_text_g_c(unet, text_encoder, False, False)
loras = extract_lora_child_module(unet, target_replace_module=["Transformer2DModel"])
for lora_i in loras:
lora_i.scale = validation_data.spatial_scale
if validation_data.noise_prior > 0:
preset_noise = (validation_data.noise_prior) ** 0.5 * batch['inversion_noise'] + (
1-validation_data.noise_prior) ** 0.5 * torch.randn_like(batch['inversion_noise'])
else:
preset_noise = None
pipeline = TextToVideoSDPipeline.from_pretrained(
pretrained_model_path,
text_encoder=text_encoder,
vae=vae,
unet=unet
)
diffusion_scheduler = DDIMScheduler.from_config(pipeline.scheduler.config)
pipeline.scheduler = diffusion_scheduler
prompt_list = text_prompt if len(validation_data.prompt) <= 0 else validation_data.prompt
for prompt in prompt_list:
save_filename = f"{global_step}_{prompt.replace('.', '')}"
out_file = f"{output_dir}/samples/{save_filename}.mp4"
with torch.no_grad():
video_frames = pipeline(
prompt,
width=validation_data.width,
height=validation_data.height,
num_frames=validation_data.num_frames,