Skip to content

Latest commit

 

History

History
106 lines (76 loc) · 8.83 KB

Learn about the Internet of Things (IoT).md

File metadata and controls

106 lines (76 loc) · 8.83 KB

Learn about the Internet of Things (IoT)

What is internet of things (IoT)?

The internet of things, or IoT, is a system of interrelated computing devices, mechanical and digital machines, objects, animals or people that are provided with unique identifiers (UIDs) and the ability to transfer data over a network without requiring human-to-human or human-to-computer interaction. A thing in the internet of things can be a person with a heart monitor implant, a farm animal with a biochip transponder, an automobile that has built-in sensors to alert the driver when tire pressure is low or any other natural or man-made object that can be assigned an Internet Protocol (IP) address and is able to transfer data over a network. Increasingly, organizations in a variety of industries are using IoT to operate more efficiently, better understand customers to deliver enhanced customer service, improve decision-making and increase the value of the business.

How does IoT work?

An IoT ecosystem consists of web-enabled smart devices that use embedded systems, such as processors, sensors and communication hardware, to collect, send and act on data they acquire from their environments. IoT devices share the sensor data they collect by connecting to an IoT gateway or other edge device where data is either sent to the cloud to be analyzed or analyzed locally. Sometimes, these devices communicate with other related devices and act on the information they get from one another. The devices do most of the work without human intervention, although people can interact with the devices -- for instance, to set them up, give them instructions or access the data. The connectivity, networking and communication protocols used with these web-enabled devices largely depend on the specific IoT applications deployed. IoT can also make use of artificial intelligence (AI) and machine learning to aid in making data collecting processes easier and more dynamic.

Why is IoT important?

The internet of things helps people live and work smarter, as well as gain complete control over their lives. In addition to offering smart devices to automate homes, IoT is essential to business. IoT provides businesses with a real-time look into how their systems really work, delivering insights into everything from the performance of machines to supply chain and logistics operations. IoT enables companies to automate processes and reduce labor costs. It also cuts down on waste and improves service delivery, making it less expensive to manufacture and deliver goods, as well as offering transparency into customer transactions. As such, IoT is one of the most important technologies of everyday life, and it will continue to pick up steam as more businesses realize the potential of connected devices to keep them competitive.

What are the benefits of IoT to organizations?

Some of the common benefits of IoT enable businesses to:

  • monitor their overall business processes;
  • improve the customer experience (CX);
  • save time and money;
  • enhance employee productivity;
  • integrate and adapt business models;
  • make better business decisions; and
  • generate more revenue. IoT encourages companies to rethink the ways they approach their businesses and gives them the tools to improve their business strategies.

Pros and cons of IoT

Some of the advantages of IoT include the following:

  • ability to access information from anywhere at any time on any device;
  • improved communication between connected electronic devices;
  • transferring data packets over a connected network saving time and money; and
  • automating tasks helping to improve the quality of a business's services and reducing the need for human intervention.

Some disadvantages of IoT include the following:

  • As the number of connected devices increases and more information is shared between devices, the potential that a hacker could steal confidential information also increases.
  • Enterprises may eventually have to deal with massive numbers -- maybe even millions -- of IoT devices, and collecting and managing the data from all those devices will be challenging.
  • If there's a bug in the system, it's likely that every connected device will become corrupted.
  • Since there's no international standard of compatibility for IoT, it's difficult for devices from different manufacturers to communicate with each other.

IoT standards and frameworks

There are several emerging IoT standards, including the following:

  • IPv6
  • ZigBee
  • LiteOS
  • OneM2M
  • Data Distribution Service (DDS)
  • Advanced Message Queuing Protocol (AMQP)
  • Constrained Application Protocol (CoAP)
  • Long Range Wide Area Network (LoRaWAN)

IoT frameworks include the following:

  • Amazon Web Services (AWS) IoT is a cloud computing platform for IoT released by Amazon
  • Arm Mbed IoT is a platform to develop apps for IoT based on Arm microcontrollers.
  • Microsoft's Azure IoT Suite
  • Google's Brillo/Weave is a platform for the rapid implementation of IoT applications.
  • Calvin

Consumer and enterprise IoT applications

QThere are numerous real-world applications of the internet of things, ranging from consumer IoT and enterprise IoT to manufacturing and industrial IoT (IIoT). IoT applications span numerous verticals, including automotive, telecom and energy.

In the consumer segment, for example, smart homes that are equipped with smart thermostats, smart appliances and connected heating, lighting and electronic devices can be controlled remotely via computers and smartphones.

Wearable devices with sensors and software can collect and analyze user data, sending messages to other technologies about the users with the aim of making users' lives easier and more comfortable. Wearable devices are also used for public safety -- for example, improving first responders' response times during emergencies by providing optimized routes to a location or by tracking construction workers' or firefighters' vital signs at life-threatening sites.

In healthcare, IoT offers many benefits, including the ability to monitor patients more closely using an analysis of the data that's generated. Hospitals often use IoT systems to complete tasks such as inventory management for both pharmaceuticals and medical instruments.

Smart buildings can, for instance, reduce energy costs using sensors that detect how many occupants are in a room. The temperature can adjust automatically -- for example, turning the air conditioner on if sensors detect a conference room is full or turning the heat down if everyone in the office has gone home.

In agriculture, IoT-based smart farming systems can help monitor, for instance, light, temperature, humidity and soil moisture of crop fields using connected sensors. IoT is also instrumental in automating irrigation systems.

In a smart city, IoT sensors and deployments, such as smart streetlights and smart meters, can help alleviate traffic, conserve energy, monitor and address environmental concerns, and improve sanitation.

IoT security and privacy issues

The internet of things connects billions of devices to the internet and involves the use of billions of data points, all of which need to be secured. Due to its expanded attack surface, IoT security and IoT privacy are cited as major concerns.

In 2016, one of the most notorious recent IoT attacks was Mirai, a botnet that infiltrated domain name server provider Dyn and took down many websites for an extended period of time in one of the biggest distributed denial-of-service (DDoS) attacks ever seen. Attackers gained access to the network by exploiting poorly secured IoT devices.

Because IoT devices are closely connected, all a hacker has to do is exploit one vulnerability to manipulate all the data, rendering it unusable. Manufacturers that don't update their devices regularly -- or at all -- leave them vulnerable to cybercriminals.

Additionally, connected devices often ask users to input their personal information, including names, ages, addresses, phone numbers and even social media accounts -- information that's invaluable to hackers.

Hackers aren't the only threat to the internet of things; privacy is another major concern for IoT users. For instance, companies that make and distribute consumer IoT devices could use those devices to obtain and sell users' personal data.

Beyond leaking personal data, IoT poses a risk to critical infrastructure, including electricity, transportation and inancial services.

Conclusion

In conclusion, Internet of Things is the concept in which the virtual world of information technology connected to the real world of things. The technologies of Internet of things such as RFID and Sensor make our life become better and more comfortable.

Contributors

  • Shrejal
  • aaquib ali
  • Ruthvik
  • Ekta Arora

Made with 🎈