-
Notifications
You must be signed in to change notification settings - Fork 3
/
bootstrap.py
377 lines (308 loc) · 14.2 KB
/
bootstrap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
from __future__ import absolute_import, division, print_function
from numpy.random import randint
from math import ceil, sqrt
import numpy as np
import pyerf
import warnings
s2 = sqrt(2)
def _ncdf_py(x):
return 0.5*(1+pyerf.erf(x/s2))
def _nppf_py(x):
return s2 * pyerf.erfinv(2*x-1)
nppf = np.vectorize(_nppf_py, [np.float])
ncdf = np.vectorize(_ncdf_py, [np.float])
__version__ = '1.0.0'
# Keep python 2/3 compatibility, without using six. At some point,
# we may need to add six as a requirement, but right now we can avoid it.
try:
xrange
except NameError:
xrange = range
class InstabilityWarning(UserWarning):
"""Issued when results may be unstable."""
pass
# On import, make sure that InstabilityWarnings are not filtered out.
warnings.simplefilter('always', InstabilityWarning)
def ci(data, statfunction=None, alpha=0.05, n_samples=10000,
method='bca', output='lowhigh', epsilon=0.001, multi=None,
_iter=True):
"""
Given a set of data ``data``, and a statistics function ``statfunction`` that
applies to that data, computes the bootstrap confidence interval for
``statfunction`` on that data. Data points are assumed to be delineated by
axis 0.
Parameters
----------
data: array_like, shape (N, ...) OR tuple of array_like all with shape (N, ...)
Input data. Data points are assumed to be delineated by axis 0. Beyond this,
the shape doesn't matter, so long as ``statfunction`` can be applied to the
array. If a tuple of array_likes is passed, then samples from each array (along
axis 0) are passed in order as separate parameters to the statfunction. The
type of data (single array or tuple of arrays) can be explicitly specified
by the multi parameter.
statfunction: function (data, weights=(weights, optional)) -> value
This function should accept samples of data from ``data``. It is applied
to these samples individually.
If using the ABC method, the function _must_ accept a named ``weights``
parameter which will be an array_like with weights for each sample, and
must return a _weighted_ result. Otherwise this parameter is not used
or required. Note that numpy's np.average accepts this. (default=np.average)
alpha: float or iterable, optional
The percentiles to use for the confidence interval (default=0.05). If this
is a float, the returned values are (alpha/2, 1-alpha/2) percentile confidence
intervals. If it is an iterable, alpha is assumed to be an iterable of
each desired percentile.
n_samples: float, optional
The number of bootstrap samples to use (default=10000)
method: string, optional
The method to use: one of 'pi', 'bca', or 'abc' (default='bca')
output: string, optional
The format of the output. 'lowhigh' gives low and high confidence interval
values. 'errorbar' gives transposed abs(value-confidence interval value) values
that are suitable for use with matplotlib's errorbar function. (default='lowhigh')
epsilon: float, optional (only for ABC method)
The step size for finite difference calculations in the ABC method. Ignored for
all other methods. (default=0.001)
multi: boolean, optional
If False, assume data is a single array. If True, assume data is a tuple/other
iterable of arrays of the same length that should be sampled together. If None,
decide based on whether the data is an actual tuple. (default=None)
Returns
-------
confidences: tuple of floats
The confidence percentiles specified by alpha
Calculation Methods
-------------------
'pi': Percentile Interval (Efron 13.3)
The percentile interval method simply returns the 100*alphath bootstrap
sample's values for the statistic. This is an extremely simple method of
confidence interval calculation. However, it has several disadvantages
compared to the bias-corrected accelerated method, which is the default.
'bca': Bias-Corrected Accelerated (BCa) Non-Parametric (Efron 14.3) (default)
This method is much more complex to explain. However, it gives considerably
better results, and is generally recommended for normal situations. Note
that in cases where the statistic is smooth, and can be expressed with
weights, the ABC method will give approximated results much, much faster.
Note that in a case where the statfunction results in equal output for every
bootstrap sample, the BCa confidence interval is technically undefined, as
the acceleration value is undefined. To match the percentile interval method
and give reasonable output, the implementation of this method returns a
confidence interval of zero width using the 0th bootstrap sample in this
case, and warns the user.
'abc': Approximate Bootstrap Confidence (Efron 14.4, 22.6)
This method provides approximated bootstrap confidence intervals without
actually taking bootstrap samples. This requires that the statistic be
smooth, and allow for weighting of individual points with a weights=
parameter (note that np.average allows this). This is _much_ faster
than all other methods for situations where it can be used.
Examples
--------
To calculate the confidence intervals for the mean of some numbers:
>> boot.ci( np.randn(100), np.average )
Given some data points in arrays x and y calculate the confidence intervals
for all linear regression coefficients simultaneously:
>> boot.ci( (x,y), scipy.stats.linregress )
References
----------
Efron, An Introduction to the Bootstrap. Chapman & Hall 1993
"""
# Deal with the alpha values
if np.iterable(alpha):
alphas = np.array(alpha)
else:
alphas = np.array([alpha/2, 1-alpha/2])
if multi is None:
if isinstance(data, tuple):
multi = True
else:
multi = False
if statfunction is None:
if _iter:
statfunction = np.average
else:
def statfunc_wrapper(x, *args, **kwargs):
return np.average(x, axis=-1, *args, **kwargs)
statfunction = statfunc_wrapper
# Ensure that the data is actually an array. This isn't nice to pandas,
# but pandas seems much much slower and the indexes become a problem.
if not multi:
data = np.array(data)
tdata = (data,)
else:
tdata = tuple( np.array(x) for x in data )
# Deal with ABC *now*, as it doesn't need samples.
if method == 'abc':
n = tdata[0].shape[0]*1.0
nn = tdata[0].shape[0]
I = np.identity(nn)
ep = epsilon / n*1.0
p0 = np.repeat(1.0/n,nn)
try:
t0 = statfunction(*tdata,weights=p0)
except TypeError as e:
raise TypeError("statfunction does not accept correct arguments for ABC ({0})".format(e.message))
di_full = I - p0
tp = np.fromiter((statfunction(*tdata, weights=p0+ep*di)
for di in di_full), dtype=np.float)
tm = np.fromiter((statfunction(*tdata, weights=p0-ep*di)
for di in di_full), dtype=np.float)
t1 = (tp-tm)/(2*ep)
t2 = (tp-2*t0+tm)/ep**2
sighat = np.sqrt(np.sum(t1**2))/n
a = (np.sum(t1**3))/(6*n**3*sighat**3)
delta = t1/(n**2*sighat)
cq = (statfunction(*tdata,weights=p0+ep*delta)-2*t0+statfunction(*tdata,weights=p0-ep*delta))/(2*sighat*ep**2)
bhat = np.sum(t2)/(2*n**2)
curv = bhat/sighat-cq
z0 = nppf(2*ncdf(a)*ncdf(-curv))
Z = z0+nppf(alphas)
za = Z/(1-a*Z)**2
# stan = t0 + sighat * nppf(alphas)
abc = np.zeros_like(alphas)
for i in range(0,len(alphas)):
abc[i] = statfunction(*tdata,weights=p0+za[i]*delta)
if output == 'lowhigh':
return abc
elif output == 'errorbar':
return abs(abc-statfunction(tdata))[np.newaxis].T
else:
raise ValueError("Output option {0} is not supported.".format(output))
# We don't need to generate actual samples; that would take more memory.
# Instead, we can generate just the indexes, and then apply the statfun
# to those indexes.
if _iter:
bootindexes = bootstrap_indexes(tdata[0], n_samples)
stat = np.array([statfunction(*(x[indexes] for x in tdata))
for indexes in bootindexes])
else:
bootindexes = bootstrap_indexes_array(tdata[0], n_samples)
stat = statfunction(*(x[bootindexes] for x in tdata))
stat.sort(axis=0)
# Percentile Interval Method
if method == 'pi':
avals = alphas
# Bias-Corrected Accelerated Method
elif method == 'bca':
# The value of the statistic function applied just to the actual data.
ostat = statfunction(*tdata)
# The bias correction value.
z0 = nppf( ( 1.0*np.sum(stat < ostat, axis=0) ) / n_samples )
# Statistics of the jackknife distribution
jackindexes = jackknife_indexes(tdata[0])
jstat = [statfunction(*(x[indexes] for x in tdata)) for indexes in jackindexes]
jmean = np.mean(jstat,axis=0)
# Temporarily kill numpy warnings:
oldnperr = np.seterr(invalid='ignore')
# Acceleration value
a = np.sum((jmean - jstat)**3, axis=0) / (
6.0 * np.sum((jmean - jstat)**2, axis=0)**1.5)
if np.any(np.isnan(a)):
nanind = np.nonzero(np.isnan(a))
warnings.warn("BCa acceleration values for indexes {} were undefined. \
Statistic values were likely all equal. Affected CI will \
be inaccurate.".format(nanind), InstabilityWarning, stacklevel=2)
zs = z0 + nppf(alphas).reshape(alphas.shape+(1,)*z0.ndim)
avals = ncdf(z0 + zs/(1-a*zs))
np.seterr(**oldnperr)
else:
raise ValueError("Method {0} is not supported.".format(method))
nvals = np.round((n_samples-1)*avals)
oldnperr = np.seterr(invalid='ignore')
if np.any(np.isnan(nvals)):
warnings.warn("Some values were NaN; results are probably unstable " +
"(all values were probably equal)", InstabilityWarning,
stacklevel=2)
if np.any(nvals == 0) or np.any(nvals == n_samples-1):
warnings.warn("Some values used extremal samples; " +
"results are probably unstable.",
InstabilityWarning, stacklevel=2)
elif np.any(nvals < 10) or np.any(nvals >= n_samples-10):
warnings.warn("Some values used top 10 low/high samples; " +
"results may be unstable.",
InstabilityWarning, stacklevel=2)
np.seterr(**oldnperr)
nvals = np.nan_to_num(nvals).astype('int')
if output == 'lowhigh':
if nvals.ndim == 1:
# All nvals are the same. Simple broadcasting
return stat[nvals]
else:
# Nvals are different for each data point. Not simple broadcasting.
# Each set of nvals along axis 0 corresponds to the data at the same
# point in other axes.
return stat[(nvals, np.indices(nvals.shape)[1:].squeeze())]
elif output == 'errorbar':
if nvals.ndim == 1:
return abs(statfunction(data)-stat[nvals])[np.newaxis].T
else:
return abs(statfunction(data)-stat[(nvals, np.indices(nvals.shape)[1:])])[np.newaxis].T
else:
raise ValueError("Output option {0} is not supported.".format(output))
def bootstrap_indexes(data, n_samples=10000):
"""
Given data points data, where axis 0 is considered to delineate points, return
an generator for sets of bootstrap indexes. This can be used as a list
of bootstrap indexes (with list(bootstrap_indexes(data))) as well.
"""
for _ in xrange(n_samples):
yield randint(data.shape[0], size=(data.shape[0],))
def bootstrap_indexes_array(data, n_samples=10000):
return randint(data.shape[0], size=(n_samples, data.shape[0]))
def jackknife_indexes(data):
"""
Given data points data, where axis 0 is considered to delineate points, return
a list of arrays where each array is a set of jackknife indexes.
For a given set of data Y, the jackknife sample J[i] is defined as the data set
Y with the ith data point deleted.
"""
base = np.arange(0,len(data))
return (np.delete(base,i) for i in base)
def subsample_indexes(data, n_samples=1000, size=0.5):
"""
Given data points data, where axis 0 is considered to delineate points, return
a list of arrays where each array is indexes a subsample of the data of size
``size``. If size is >= 1, then it will be taken to be an absolute size. If
size < 1, it will be taken to be a fraction of the data size. If size == -1, it
will be taken to mean subsamples the same size as the sample (ie, permuted
samples)
"""
if size == -1:
size = len(data)
elif (size < 1) and (size > 0):
size = int(round(size*len(data)))
elif size > 1:
pass
else:
raise ValueError("size cannot be {0}".format(size))
base = np.tile(np.arange(len(data)),(n_samples,1))
for sample in base: np.random.shuffle(sample)
return base[:,0:size]
def bootstrap_indexes_moving_block(data, n_samples=10000,
block_length=3, wrap=False):
"""Generate moving-block bootstrap samples.
Given data points `data`, where axis 0 is considered to delineate points,
return a generator for sets of bootstrap indexes. This can be used as a
list of bootstrap indexes (with list(bootstrap_indexes_moving_block(data))) as
well.
Parameters
----------
n_samples [default 10000]: the number of subsamples to generate.
block_length [default 3]: the length of block.
wrap [default False]: if false, choose only blocks within the data, making
the last block for data of length L start at L-block_length. If true, choose
blocks starting anywhere, and if they extend past the end of the data, wrap
around to the beginning of the data again.
"""
n_obs = data.shape[0]
n_blocks = int(ceil(n_obs / block_length))
nexts = np.repeat(np.arange(0, block_length)[None, :], n_blocks, axis=0)
if wrap:
last_block = n_obs
else:
last_block = n_obs - block_length
for _ in xrange(n_samples):
blocks = np.random.randint(0, last_block, size=n_blocks)
if not wrap:
yield (blocks[:, None]+nexts).ravel()[:n_obs]
else:
yield np.mod((blocks[:, None]+nexts).ravel()[:n_obs], n_obs)