forked from chosila/htoaa
-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathanalib.py
262 lines (225 loc) · 8.73 KB
/
analib.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
#! /usr/bin/env python
########################################################################
### NanoAOD analyzer utility n00dle.py ###
### ###
### Currently doesn't support options... but we're improving! ###
########################################################################
#import os
#import subprocess
#import sys
import uproot
import numpy as np
#import awkward
import matplotlib.pyplot as plt
import matplotlib.patheffects as PathEffects
import pandas as pd
#import itertools as it
import copy as cp
from munch import DefaultMunch
class Hist(object):
def __init__(s,size,bounds,xlabel='',ylabel='',fname='',title=''):
s.size = size
s.bounds = bounds
s.hs = [plt.hist([],size,bounds)[0],plt.hist([],size,bounds)[1]]
s.xlabel = xlabel
s.ylabel = ylabel
s.title = title
s.fname = fname
def __getitem__(s,i):
if (i > 1) or (i < -2):
raise Exception('histo object was accessed with an invalid index')
return s.hs[i]
def __setitem__(s,i,val):
if (i > 1) or (i < -2):
raise Exception('histo object was accessed with an invalid index')
s.hs[i] = val
return s
## Adds the values of a passed histogram to the class's plot
def add(s,inplot):
if (len(inplot[0]) != len(s.hs[0])) or (len(inplot[1]) != len(s.hs[1])):
raise Exception('Mismatch between passed and stored histogram dimensions')
s.hs[0] = s.hs[0] + inplot[0]
return s
## Fills the stored histogram with the supplied values
def fill(s,vals):
s.hs[0] = s.hs[0] + plt.hist(vals,s.size,s.bounds)[0]
return s
## Fills the stored histogram with values from the supplied dataframe
def dfill(s,frame):
s.fill(frame.melt(value_name=0).drop('variable',axis=1).dropna().reset_index(drop=True)[0])
return s
## Divides the stored histogram by another, and either changes itself or returns a changed object
def divideby(s,inplot,split=False):
if (len(inplot[0]) != len(s.hs[0])) or (len(inplot[1]) != len(s.hs[1])):
raise Exception('Mismatch between passed and stored histogram dimensions')
if split:
s = cp.deepcopy(s)
s.hs[0] = np.divide(s.hs[0],inplot[0], where=inplot[0]!=0)
## Empty bins should have a weight of 0
s.hs[0][np.isnan(s.hs[0])] = 0
return s
def norm(s,tar=0,split=False):
if split:
s = cp.deepcopy(s)
nval = s.hs[0][tar]
s.hs[0] = s.hs[0]/nval
return s
## Creates and returns a pyplot-compatible histogram object
def make(s,logv=False,htype='bar',color=None,linestyle='solid'):
#print(s.hs)
return plt.hist(s.hs[1][:-1],s.size,s.bounds,weights=s.hs[0],log=logv,histtype=htype,color=color,linestyle=linestyle)
def plot(s,logv=False,ylim=False,same=False,htype='bar'):
if not same:
plt.clf()
s.make(logv,htype)
if ylim:
plt.ylim(ylim)
if s.xlabel != '':
plt.xlabel(s.xlabel)
if s.ylabel != '':
plt.ylabel(s.ylabel)
if s.title != '':
plt.title(s.title)
if s.fname != '':
plt.savefig(s.fname)
def stackplot(s,phist,ylim=False):
plt.clf()
s.make(htype='step',color='black')
phist.make(htype='step',color='red')
if ylim:
plt.ylim(ylim)
if s.xlabel != '':
plt.xlabel(s.xlabel)
if s.ylabel != '':
plt.ylabel(s.ylabel)
if s.title != '':
plt.title(s.title)
if s.fname != '':
plt.savefig(s.fname+'_v')
class Hist2d(object):
def __init__(s,sizes,bounds,xlabel='',ylabel='',fname='',title=''):
s.sizes = sizes
s.bounds = bounds
s.hs = [plt.hist2d([],[],sizes,bounds)[0],plt.hist2d([],[],sizes,bounds)[1],plt.hist2d([],[],sizes,bounds)[2],plt.hist2d([],[],sizes,bounds)]
s.xlabel = xlabel
s.ylabel = ylabel
s.title = title
s.fname = fname
def __getitem__(s,i):
if (i > 2) or (i < -3):
raise Exception('histo object was accessed with an invalid index')
return s.hs[i]
def add(s,inplot):
if (len(inplot[0]) != len(s.hs[0])) or (len(inplot[1]) != len(s.hs[1])) or (len(inplot[2]) != len(s.hs[2])):
raise Exception('Mismatch between passed and stored histogram dimensions')
s.hs[0] = s.hs[0] + inplot[0]
return s
def fill(s,valx,valy):
s.hs[0] = s.hs[0] + plt.hist2d(valx,valy,s.sizes,s.bounds)[0]
return s
def dfill(s,framex,framey):
s.fill(framex.melt(value_name=0).drop('variable',axis=1).dropna().reset_index(drop=True)[0],\
framey.melt(value_name=0).drop('variable',axis=1).dropna().reset_index(drop=True)[0])
return s
def norm(s,tar=[0,0],split=False):
if split:
s = cp.deepcopy(s)
nval = s.hs[0][tar[0]][tar[1]]
s.hs[0] = s.hs[0]/nval
return s
def make(s,edgecolor='face',linewidth=1):
plt.clf()
#out = plt.imshow(s.hs[0].T[::-1],extent=(s.bounds[0][0],s.bounds[0][1],s.bounds[1][0],s.bounds[1][1]),aspect='auto',origin='upper')
out = plt.pcolor(s.hs[1],s.hs[2],s.hs[0].T,edgecolor=edgecolor,linewidth=linewidth)
return out
def plot(s,logv=False,text=False,edgecolor='face',linewidth=1):
s.make(edgecolor,linewidth,same)
#print(s.hs[0])
#print(s.hs[1])
#print(s.hs[2])
if text:
strarray = s.hs[0].round(3).astype(str)
for i in range(len(s.hs[1])-1):
for j in range(len(s.hs[2])-1):
plt.text(s.hs[1][i]+0.5,s.hs[2][j]+0.5, strarray[i,j],color="w", ha="center", va="center", fontweight='normal',fontsize=9).set_path_effects([PathEffects.withStroke(linewidth=2,foreground='k')])
else:
plt.colorbar()
if s.xlabel != '':
plt.xlabel(s.xlabel)
if s.ylabel != '':
plt.ylabel(s.ylabel)
if s.title != '':
plt.title(s.title)
if s.fname != '':
plt.savefig(s.fname)
def inc(var):
return var+1
class PhysObj(DefaultMunch):
def __init__(s,name='',rfile='',*args):
if len(args) != 0:
events = uproot.open(rfile).get('Events')
for arg in args:
s[arg] = pd.DataFrame(events.array(name+'_'+arg)).rename(columns=inc)
super().__init__(name)
def __setitem__(s,key,value):
if not isinstance(value,pd.DataFrame):
raise Exception("PhysObj elements can only be dataframe objects")
super().__setitem__(key,value)
#s.update({key:value})
return s
## Removes events that are missing in the passed frame
def trimTo(s,frame,split=False):
if split:
s = s.copy()
for elem in s:
s[elem] = s[elem].loc[frame.index.intersection(s[elem].index)]
return s
## Removes events that are missing from the passed frame (probably not ideal to have to do this)
def trim(s,frame):
for elem in s:
frame = frame.loc[s[elem].index.intersection(frame.index)]
return frame
## Removes particles that fail the passed test, and events if they become empty
def cut(s,mask,split=False):
if split:
s = s.copy()
for elem in s:
s[elem] = s[elem][mask].dropna(how='all')
return s
class Event():
def __init__(s,*args):
if len(args) == 0:
raise Exception("Event was initialized without an appropriate object")
s.objs = {}
for arg in args:
s.register(arg)
s.frame = args[0][list(args[0].keys())[0]]
def __getitem__(s,obj):
return s.objs[obj]
def __iter__(s):
return iter(s.obj)
## Adds a new PhysObj to the Event (or replaces an existing one)
def register(s,obj):
if not isinstance(obj,PhysObj):
raise Exception("Non PhysObj object passed to event.")
s.objs.update({obj.name:obj})
return s
## Looks through all associated objects for disqualified events
def scan(s):
for obj in s.objs:
for elem in s[obj]:
s.frame = s.frame.loc[s[obj][elem].index.intersection(s.frame.index)]
return s
## Applies disqualified events to all associated objects
def applycuts(s,split=False):
if split:
s = cp.deepcopy(s)
for obj in s.objs:
s[obj].trimTo(s.frame)
return s
def sync(s,split=False):
if split:
s = cp.deepcopy(s)
s.scan()
s.applycuts()
return s