-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmodel.py
60 lines (49 loc) · 2.32 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import torch
import torch.nn as nn
import torchvision.models as models
class EncoderCNN(nn.Module):
def __init__(self, embed_size):
super(EncoderCNN, self).__init__()
resnet = models.resnet152(pretrained=True)
for param in resnet.parameters():
param.requires_grad_(False)
modules = list(resnet.children())[:-1]
self.resnet = nn.Sequential(*modules)
self.embed = nn.Linear(resnet.fc.in_features, embed_size)
def forward(self, images):
features = self.resnet(images)
features = features.view(features.size(0), -1)
features = self.embed(features)
return features
class DecoderRNN(nn.Module):
def __init__(self, embed_size, hidden_size, vocab_size, num_layers=2, drop_prob = 0.2):
#Find why this line is giving an error
super(DecoderRNN, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.embedding = nn.Embedding(vocab_size,embed_size)
self.lstm = nn.LSTM(embed_size,hidden_size,num_layers, dropout = drop_prob, batch_first = True)
self.linear = nn.Linear(hidden_size,vocab_size)
def forward(self, features, captions):
captions = captions[:,:-1]
embeddings = self.embedding(captions)
total_input = torch.cat((features.unsqueeze(1),embeddings),1)
lstm_out, self.hidden = self.lstm(total_input)
outputs = self.linear(lstm_out)
return outputs
def sample(self, inputs, states=None, max_len=20):
" accepts pre-processed image tensor (inputs) and returns predicted sentence (list of tensor ids of length max_len) "
output = []
hidden = (torch.zeros(self.num_layers,1,self.hidden_size).to(inputs.device),
torch.zeros(self.num_layers,1,self.hidden_size).to(inputs.device))
for i in range(max_len):
lstm_out, hidden = self.lstm(inputs,hidden)
# 1*1*vocab_dim
output_vocab = self.linear(lstm_out)
# 1*vocab_dim
output_vocab = output_vocab.squeeze(1)
output_word = output_vocab.argmax(1)
output.append(output_word.item())
# 1*1*embed_dim
inputs = self.embedding(output_word.unsqueeze(0))
return output