-
Notifications
You must be signed in to change notification settings - Fork 0
/
Advanced Level.sql
291 lines (240 loc) · 10.6 KB
/
Advanced Level.sql
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
-- Advanced Level SQL Script Guide
-- Step 1: Advanced Database Administration
-- Example 1: Create a database backup
-- Note: Database backup commands can vary depending on the DBMS used.
-- For MySQL, use: mysqldump -u username -p database_name > backup_file.sql
-- Example 2: Restore a database from a backup
-- Note: Restore commands can vary depending on the DBMS used.
-- For MySQL, use: mysql -u username -p database_name < backup_file.sql
-- Step 2: Database Performance Optimization
-- Example: Analyze and optimize slow queries using indexes, table partitioning, and query rewriting.
-- Step 3: High Availability and Replication
-- Example: Set up database replication for fault tolerance and scalability.
-- Step 4: Working with Large Databases
-- Example 1: Create a partitioned table for faster data retrieval
CREATE TABLE books_partitioned (
book_id INT PRIMARY KEY,
title VARCHAR(100),
author_id INT,
price DECIMAL(8,2)
)
PARTITION BY RANGE (book_id)(
PARTITION p0 VALUES LESS THAN (100),
PARTITION p1 VALUES LESS THAN (200),
PARTITION p2 VALUES LESS THAN (MAXVALUE)
);
-- Example 2: Implement Sharding for distributing data across multiple servers
-- Note: Sharding is a complex technique and depends on the specific DBMS and setup.
-- Step 5: Advanced SQL Techniques
-- Example 1: Recursive SQL for hierarchical data (revisited)
WITH RECURSIVE category_tree AS (
SELECT category_id, category_name, parent_category_id
FROM categories
WHERE category_id = 1
UNION ALL
SELECT c.category_id, c.category_name, c.parent_category_id
FROM categories c
JOIN category_tree ct ON c.parent_category_id = ct.category_id
)
SELECT * FROM category_tree;
-- Example 2: Pivoting Data using CASE and Aggregate functions
SELECT
author_id,
SUM(CASE WHEN price > 20.00 THEN 1 ELSE 0 END) AS expensive_books,
SUM(CASE WHEN price <= 20.00 THEN 1 ELSE 0 END) AS cheap_books
FROM books
GROUP BY author_id;
-- Step 6: Incorporating Machine Learning Models with SQL
-- Example: Use a machine learning model to predict book prices based on other features.
-- Step 7: Advanced Data Analysis
-- Example 1: Use advanced statistical functions for data analysis
SELECT
author_id,
AVG(price) AS avg_price,
STDDEV(price) AS price_stddev
FROM books
GROUP BY author_id;
-- Example 2: Use the LEAD and LAG functions for time-series analysis
SELECT
book_id,
title,
price,
LAG(price) OVER (ORDER BY book_id) AS prev_price,
LEAD(price) OVER (ORDER BY book_id) AS next_price
FROM books;
-- Step 8: Real-World Projects
-- Work on complex database projects involving big data, data warehousing, and analytics.
-- Example: Data Warehousing (Continued from Step 8)
-- Assume you're working on a data warehousing project for an e-commerce company.
-- Create a data warehouse schema for online sales data.
CREATE SCHEMA data_warehouse;
CREATE TABLE data_warehouse.sales (
sale_id INT PRIMARY KEY,
sale_date DATE NOT NULL,
customer_id INT NOT NULL,
product_id INT NOT NULL,
quantity INT NOT NULL,
total_price DECIMAL(10, 2) NOT NULL
);
-- Implement ETL processes to populate the data warehouse.
INSERT INTO data_warehouse.sales (sale_id, sale_date, customer_id, product_id, quantity, total_price)
SELECT
s.sale_id,
s.sale_date,
u.user_id AS customer_id,
p.product_id,
s.quantity,
s.quantity * p.price AS total_price
FROM online_sales.sales s
JOIN users u ON s.username = u.username
JOIN products p ON s.product_name = p.product_name;
-- Task 9: Advanced Security Measures
-- Implement encryption, authentication, and authorization for securing sensitive data.
-- Example: Data Encryption (Continued from Task 9)
-- Suppose you're working for a healthcare organization managing a database containing sensitive patient information.
-- Create a table to store patient records with encrypted data.
CREATE TABLE patient_records (
record_id INT PRIMARY KEY,
patient_name VARBINARY(100) NOT NULL,
medical_history VARBINARY(200),
prescription VARBINARY(500)
);
-- Implement data encryption using SQL's cryptographic functions.
INSERT INTO patient_records (record_id, patient_name, medical_history, prescription)
VALUES
(1, AES_ENCRYPT('John Doe', 'encryption_key'), AES_ENCRYPT('Heart condition', 'encryption_key'), AES_ENCRYPT('Medication X', 'encryption_key')),
(2, AES_ENCRYPT('Jane Smith', 'encryption_key'), AES_ENCRYPT('Allergy to penicillin', 'encryption_key'), AES_ENCRYPT('Medication Y', 'encryption_key'));
-- Task 10: Integration of SQL and NoSQL Databases (Continued from Task 10)
-- Assume you have an SQL database for user information and a NoSQL database for user-generated content.
-- Example: Querying and combining data from SQL and NoSQL databases (Continued from Task 10)
-- Retrieve user information along with their latest post (from NoSQL) if available.
SELECT
u.user_id,
u.username,
u.email,
u.registration_date,
p.post_id,
p.content AS latest_post
FROM users u
LEFT JOIN (
SELECT user_id, MAX(post_id) AS post_id
FROM user_posts.posts
GROUP BY user_id
) max_posts ON u.user_id = max_posts.user_id
LEFT JOIN user_posts.posts p ON max_posts.post_id = p.post_id;
-- Step 10: Integration of SQL and NoSQL databases
-- Example: Combining SQL and NoSQL Data
-- Assume you have an SQL database with 'users' table containing user information.
CREATE TABLE users (
user_id INT PRIMARY KEY,
username VARCHAR(50) NOT NULL,
email VARCHAR(100) NOT NULL,
registration_date DATE NOT NULL
);
INSERT INTO users (user_id, username, email, registration_date)
VALUES
(1, 'john_doe', 'john@example.com', '2023-07-01'),
(2, 'jane_smith', 'jane@example.com', '2023-07-02');
-- Assume you have a NoSQL database storing user-generated content (e.g., posts) as JSON documents.
-- Let's assume the NoSQL database is named 'user_posts' and the JSON documents are stored in a 'posts' collection.
-- Example: Querying and combining data from SQL and NoSQL databases
-- Retrieve user information along with their latest post (from NoSQL) if available.
SELECT
u.user_id,
u.username,
u.email,
u.registration_date,
p.post_id,
p.content AS latest_post
FROM users u
LEFT JOIN (
SELECT user_id, MAX(post_id) AS post_id
FROM user_posts.posts
GROUP BY user_id
) max_posts ON u.user_id = max_posts.user_id
LEFT JOIN user_posts.posts p ON max_posts.post_id = p.post_id;
-- Step 11: Real-Time Data Processing
-- Example: Real-time analytics with streaming data
-- Assume you have a table for real-time transactions in an SQL database.
CREATE TABLE real_time_transactions (
transaction_id INT PRIMARY KEY,
user_id INT NOT NULL,
transaction_date TIMESTAMP NOT NULL,
amount DECIMAL(10, 2) NOT NULL
);
-- Example: Streaming Analytics
-- Suppose you want to monitor real-time transactions and raise an alert for unusually large transactions.
-- Create a trigger to handle real-time data processing when a new transaction is inserted.
DELIMITER //
CREATE TRIGGER process_real_time_transactions
AFTER INSERT ON real_time_transactions
FOR EACH ROW
BEGIN
DECLARE avg_amount DECIMAL(10, 2);
DECLARE std_amount DECIMAL(10, 2);
SELECT AVG(amount), STDDEV(amount) INTO avg_amount, std_amount FROM real_time_transactions;
IF NEW.amount > (avg_amount + 2 * std_amount) THEN
INSERT INTO transaction_alerts (transaction_id, user_id, alert_message)
VALUES (NEW.transaction_id, NEW.user_id, 'Unusually large transaction detected.');
END IF;
END;
//
DELIMITER ;
-- The trigger will analyze each new transaction and insert an entry in the 'transaction_alerts' table if the transaction amount is significantly larger than the average amount of all transactions.
-- Note: These are simplified examples to demonstrate the concepts. Real-world implementations may vary based on the specific database systems and requirements.
-- Step 12: Advanced Optimization Techniques
-- Example: Query Optimization with Materialized Views
-- Assume you have a table 'orders' and want to create a materialized view for faster querying.
CREATE TABLE orders (
order_id INT PRIMARY KEY,
customer_id INT NOT NULL,
order_date DATE NOT NULL,
total_amount DECIMAL(10, 2) NOT NULL
);
-- Create a materialized view to store aggregated order data for faster retrieval.
CREATE MATERIALIZED VIEW mv_order_summary AS
SELECT
customer_id,
COUNT(order_id) AS order_count,
SUM(total_amount) AS total_sales
FROM orders
GROUP BY customer_id;
-- Refresh the materialized view periodically to keep it up-to-date with the underlying data.
REFRESH MATERIALIZED VIEW mv_order_summary;
-- Step 13: Scalability and Load Balancing
-- Example: Implementing Sharding for Horizontal Scaling
-- Assume you have a table 'user_data' and want to shard it across multiple servers.
CREATE TABLE user_data (
user_id INT PRIMARY KEY,
username VARCHAR(50) NOT NULL,
email VARCHAR(100) NOT NULL
);
-- Create a sharded table by distributing data based on the user_id range.
-- Note: Sharding logic depends on the specific requirements and DBMS used.
CREATE TABLE user_data_shard1 (LIKE user_data INCLUDING ALL) TABLESPACE ts1;
CREATE TABLE user_data_shard2 (LIKE user_data INCLUDING ALL) TABLESPACE ts2;
-- ... Create more shards as needed.
-- Implement a sharding mechanism to distribute data across shards based on user_id.
-- Step 14: Blockchain and Distributed Ledger Integration
-- Example: Interacting with Blockchain Networks
-- Assume you have a table 'blockchain_data' to store data related to blockchain transactions.
CREATE TABLE blockchain_data (
transaction_id INT PRIMARY KEY,
sender_address VARCHAR(100) NOT NULL,
receiver_address VARCHAR(100) NOT NULL,
amount DECIMAL(10, 2) NOT NULL
);
-- Insert data into the 'blockchain_data' table to represent blockchain transactions.
-- Example: Query blockchain data to calculate the total transaction amount for a specific sender.
SELECT
sender_address,
SUM(amount) AS total_sent_amount
FROM blockchain_data
WHERE sender_address = '0xabc...'; -- Replace with the actual sender address
GROUP BY sender_address;
-- Step 15: Real-World Projects
-- Continue working on complex projects to deepen your SQL expertise.
-- Example: Large-Scale Data Migration
-- In a real-world project, you might encounter a scenario where a company wants to migrate its data from an old database system to a new one. You'll use SQL to design and execute the data migration process, ensuring data integrity and minimal downtime during the transition.
-- For Step 15, the example involves real-world projects, which can vary significantly based on specific requirements and business domains.
-- Congratulations! You have completed the Advanced Level SQL Script Guide.