We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
PyTorch version: 2.4.0+cu121 Is debug build: False CUDA used to build PyTorch: 12.1 ROCM used to build PyTorch: N/A
OneFlow version: path: ['/home/ecs-user/anaconda3/envs/onediff/lib/python3.9/site-packages/oneflow'], version: 0.9.1.dev20240826+cu118, git_commit: d23c061, cmake_build_type: Release, rdma: True, mlir: True, enterprise: False Nexfort version: none OneDiff version: 1.2.1.dev21+geff625d7.d20240829 OneDiffX version: 1.2.0
OS: Ubuntu 22.04.4 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.29.0 Libc version: glibc-2.35
Python version: 3.9.19 (main, May 6 2024, 19:43:03) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-5.15.0-71-generic-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: 12.2.140 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA GeForce RTX 4090 GPU 1: NVIDIA GeForce RTX 4090 GPU 2: NVIDIA GeForce RTX 4090 GPU 3: NVIDIA GeForce RTX 4090 GPU 4: NVIDIA GeForce RTX 4090 GPU 5: NVIDIA GeForce RTX 4090 GPU 6: NVIDIA GeForce RTX 4090 GPU 7: NVIDIA GeForce RTX 4090
Nvidia driver version: 535.183.01 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.7 /usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.7 /usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.7 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.7 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.7 /usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.7 /usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.7 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True
CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 52 bits physical, 57 bits virtual Byte Order: Little Endian CPU(s): 128 On-line CPU(s) list: 0-127 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) Gold 6462C CPU family: 6 Model: 143 Thread(s) per core: 2 Core(s) per socket: 32 Socket(s): 2 Stepping: 8 CPU max MHz: 3900.0000 CPU min MHz: 800.0000 BogoMIPS: 6600.00 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cat_l2 cdp_l3 invpcid_single intel_ppin cdp_l2 ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect avx_vnni avx512_bf16 wbnoinvd dtherm ida arat pln pts hwp hwp_notify hwp_act_window hwp_epp hwp_pkg_req avx512vbmi umip pku ospke waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq la57 rdpid bus_lock_detect cldemote movdiri movdir64b enqcmd fsrm md_clear serialize tsxldtrk pconfig arch_lbr amx_bf16 avx512_fp16 amx_tile amx_int8 flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 3 MiB (64 instances) L1i cache: 2 MiB (64 instances) L2 cache: 128 MiB (64 instances) L3 cache: 120 MiB (2 instances) NUMA node(s): 2 NUMA node0 CPU(s): 0-31,64-95 NUMA node1 CPU(s): 32-63,96-127 Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected
Versions of relevant libraries: [pip3] clip-anytorch==2.6.0 [pip3] dctorch==0.1.2 [pip3] diffusers==0.29.2 [pip3] numpy==1.26.4 [pip3] torch==2.4.0 [pip3] torchdiffeq==0.2.4 [pip3] torchsde==0.2.6 [pip3] torchvision==0.19.0 [pip3] transformers==4.27.1 [pip3] triton==3.0.0 [conda] clip-anytorch 2.6.0 pypi_0 pypi [conda] dctorch 0.1.2 pypi_0 pypi [conda] numpy 1.26.4 pypi_0 pypi [conda] torch 2.4.0 pypi_0 pypi [conda] torchdiffeq 0.2.4 pypi_0 pypi [conda] torchsde 0.2.6 pypi_0 pypi [conda] torchvision 0.19.0 pypi_0 pypi [conda] triton 3.0.0 pypi_0 pypi
from diffusers import StableDiffusionXLPipeline, StableDiffusionXLKDiffusionPipeline import torch from onediffx import compile_pipe
model_id = "***" pipe = StableDiffusionXLKDiffusionPipeline.from_pretrained(model_id, variant="fp16",torch_dtype=torch.float16).to("cuda") pipe.set_scheduler('sample_dpmpp_sde') pipe = compile_pipe(pipe) prompt_list = ['cat'] for i, prompt in enumerate(prompt_list): images = pipe( prompt=prompt ).images[0] images.save(f'{i}.webp')
When I run above code, the time cost of each iteration is the same as not compile the pipe, i.e., delete the code 'pipe = compile_pipe(pipe)'.
The text was updated successfully, but these errors were encountered:
No branches or pull requests
Your current environment information
PyTorch version: 2.4.0+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A
OneFlow version: path: ['/home/ecs-user/anaconda3/envs/onediff/lib/python3.9/site-packages/oneflow'], version: 0.9.1.dev20240826+cu118, git_commit: d23c061, cmake_build_type: Release, rdma: True, mlir: True, enterprise: False
Nexfort version: none
OneDiff version: 1.2.1.dev21+geff625d7.d20240829
OneDiffX version: 1.2.0
OS: Ubuntu 22.04.4 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: version 3.29.0
Libc version: glibc-2.35
Python version: 3.9.19 (main, May 6 2024, 19:43:03) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-5.15.0-71-generic-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 12.2.140
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA GeForce RTX 4090
GPU 1: NVIDIA GeForce RTX 4090
GPU 2: NVIDIA GeForce RTX 4090
GPU 3: NVIDIA GeForce RTX 4090
GPU 4: NVIDIA GeForce RTX 4090
GPU 5: NVIDIA GeForce RTX 4090
GPU 6: NVIDIA GeForce RTX 4090
GPU 7: NVIDIA GeForce RTX 4090
Nvidia driver version: 535.183.01
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.7
/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.7
/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.7
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.7
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.7
/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.7
/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.7
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 52 bits physical, 57 bits virtual
Byte Order: Little Endian
CPU(s): 128
On-line CPU(s) list: 0-127
Vendor ID: GenuineIntel
Model name: Intel(R) Xeon(R) Gold 6462C
CPU family: 6
Model: 143
Thread(s) per core: 2
Core(s) per socket: 32
Socket(s): 2
Stepping: 8
CPU max MHz: 3900.0000
CPU min MHz: 800.0000
BogoMIPS: 6600.00
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cat_l2 cdp_l3 invpcid_single intel_ppin cdp_l2 ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect avx_vnni avx512_bf16 wbnoinvd dtherm ida arat pln pts hwp hwp_notify hwp_act_window hwp_epp hwp_pkg_req avx512vbmi umip pku ospke waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq la57 rdpid bus_lock_detect cldemote movdiri movdir64b enqcmd fsrm md_clear serialize tsxldtrk pconfig arch_lbr amx_bf16 avx512_fp16 amx_tile amx_int8 flush_l1d arch_capabilities
Virtualization: VT-x
L1d cache: 3 MiB (64 instances)
L1i cache: 2 MiB (64 instances)
L2 cache: 128 MiB (64 instances)
L3 cache: 120 MiB (2 instances)
NUMA node(s): 2
NUMA node0 CPU(s): 0-31,64-95
NUMA node1 CPU(s): 32-63,96-127
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Retbleed: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
Versions of relevant libraries:
[pip3] clip-anytorch==2.6.0
[pip3] dctorch==0.1.2
[pip3] diffusers==0.29.2
[pip3] numpy==1.26.4
[pip3] torch==2.4.0
[pip3] torchdiffeq==0.2.4
[pip3] torchsde==0.2.6
[pip3] torchvision==0.19.0
[pip3] transformers==4.27.1
[pip3] triton==3.0.0
[conda] clip-anytorch 2.6.0 pypi_0 pypi
[conda] dctorch 0.1.2 pypi_0 pypi
[conda] numpy 1.26.4 pypi_0 pypi
[conda] torch 2.4.0 pypi_0 pypi
[conda] torchdiffeq 0.2.4 pypi_0 pypi
[conda] torchsde 0.2.6 pypi_0 pypi
[conda] torchvision 0.19.0 pypi_0 pypi
[conda] triton 3.0.0 pypi_0 pypi
🐛 Describe the bug
from diffusers import StableDiffusionXLPipeline, StableDiffusionXLKDiffusionPipeline
import torch
from onediffx import compile_pipe
model_id = "***"
pipe = StableDiffusionXLKDiffusionPipeline.from_pretrained(model_id, variant="fp16",torch_dtype=torch.float16).to("cuda")
pipe.set_scheduler('sample_dpmpp_sde')
pipe = compile_pipe(pipe)
prompt_list = ['cat']
for i, prompt in enumerate(prompt_list):
images = pipe(
prompt=prompt
).images[0]
images.save(f'{i}.webp')
When I run above code, the time cost of each iteration is the same as not compile the pipe, i.e., delete the code 'pipe = compile_pipe(pipe)'.
The text was updated successfully, but these errors were encountered: