-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy path2_aber_aware_dff_dfv.py
243 lines (198 loc) · 9.09 KB
/
2_aber_aware_dff_dfv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
""" Aberrationn-aware depth-from-focus (DFF).
Thin lens for training, real lens for testing: conventional DFF works can not generalize well for real camera lenses in the real world.
Real lens for training, real lens for testing: our aberration-aware method can generalize well in the real world with only synthetic data.
Use DFVNet for training and evaluation.
"""
import os
import yaml
import wandb
import time
import logging
import cv2 as cv
import numpy as np
from tqdm import tqdm
from datetime import datetime
import torch
import torch.optim as optim
from torchvision.utils import save_image
from torch.utils.data import DataLoader
from deeplens.utils import set_seed, set_logger
from deeplens.psfnet import *
from dff import *
from DFV_models import DFVNet
def config():
with open('configs/aber_aware_dff.yml') as f:
args = yaml.load(f, Loader=yaml.FullLoader)
# Device
num_gpus = torch.cuda.device_count()
args['num_gpus'] = num_gpus
device = torch.device(f"cuda" if torch.cuda.is_available() else "cpu")
args['device'] = device
logging.info(f'Using {num_gpus} GPUs')
# Result folder
result_dir = f'./results/' + datetime.now().strftime("%m%d-%H%M%S") + '-AberAware_DFF_AiFNet'
args['results_dir'] = result_dir
os.makedirs(result_dir, exist_ok=True)
logging.info(f'Result folder: {result_dir}')
# Logger
set_logger(result_dir)
# Random seed
set_seed(126)
torch.set_default_dtype(torch.float32)
return args
def train(args):
device = args['device']
# Lens
train_lens, test_lens = get_lens(args)
# Depth-from-focus network
net = DFVNet(clean=False, level=2, use_diff=True)
dff_net = nn.DataParallel(dff_net)
if args['train']['dffnet_pretrained']:
dff_net.load_state_dict(torch.load(args['train']['dffnet_pretrained']))
dff_net = dff_net.to(device)
# Dataset
train_set, val_set = get_dataset(args)
train_loader = DataLoader(train_set, batch_size=args['bs'])
val_loader = DataLoader(val_set, batch_size=1)
print(f'Totally {len(train_set)} images for training, {len(val_set)} images for test.')
# Optimizer
optimizer = optim.Adam(dff_net.parameters(), lr=float(args['lr']))
scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=args['epochs']*len(train_set), eta_min=0)
# Training
args['mse_min'] = 100
args['acc1_max'] = 0.0
for epoch in range(args['epochs'] + 1):
# Evaluation
if epoch % 1 == 0 and epoch > 0:
validate(dff_net, test_lens, val_loader, epoch, len(val_set), args)
# Training
dff_net.train()
for sample in tqdm(train_loader):
# Input data
aif, depth = sample
aif = aif.to(device)
depth = depth.to(device) # real depth in [m]
mask = (depth > 0)
# Render focal stack
with torch.no_grad():
# Select random focus distance
avg_depth = torch.sum(depth, dim=(1,2,3)) / torch.sum(mask, dim=(1,2,3))
if torch.sum(torch.isnan(avg_depth)):
continue
focus_dists = select_focus_dist(depth, args['n_stack'], mode='linear')
# Simulate focal stack
focal_stack = []
for i in range(args['n_stack']):
foc_dist = focus_dists[:, i]
defocus_img = train_lens.render(aif, depth=-depth*1e3, foc_dist=-foc_dist*1e3)
focal_stack.append(defocus_img)
focal_stack = torch.stack(focal_stack, dim=2) # shape of [B, C, S, H, W]
torch.cuda.empty_cache()
# Forward-backward optimization
input_dict = {'stack_rgb_img':focal_stack, 'focus_position':focus_dists, 'depth':depth, 'AiF_img':aif}
losses, outputs = dff_net(input_dict, aif_args)
optimizer.zero_grad()
loss = losses['total'].mean()
loss.backward()
optimizer.step()
scheduler.step()
@torch.no_grad()
def validate(net, test_lens, valid_dataloader, epoch, num_val, args):
net.eval()
result_img_dir = f'{args["results_dir"]}/reults/'
os.makedirs(result_img_dir, exist_ok=True)
device = args['device']
aif_args = args['aif_args']
# Score for depth prediction
Avg_abs_rel = 0.0
Avg_sq_rel = 0.0
Avg_mse = 0.0
Avg_mae = 0.0
Avg_rmse = 0.0
Avg_rmse_log = 0.0
Avg_accuracy_1 = 0.0
Avg_accuracy_2 = 0.0
Avg_accuracy_3 = 0.0
# Score for aif prediction
Avg_psnr = 0.0
Avg_ssim = 0.0
val_time = 0.0
for idx, samples in enumerate(tqdm(valid_dataloader, desc="valid")):
# Generate input
aif, gt_depth = samples
aif = aif.to(device)
gt_depth = gt_depth.to(device) # depth in [m]
test_mask = gt_depth.detach().clone() > 0
avg_depth = torch.sum(gt_depth, dim=(1,2,3)) / torch.sum(test_mask, dim=(1,2,3))
if torch.sum(torch.isnan(avg_depth)):
continue
# Render DoF image for input
focal_stack = []
focus_dists = select_focus_dist(gt_depth, args['n_stack'], mode='linear')
for i in range(args['n_stack']):
foc_dist = focus_dists[:, i]
dof_img = test_lens.render(aif, depth = - gt_depth * 1e3, foc_dist = - foc_dist * 1e3)
focal_stack.append(dof_img)
torch.cuda.empty_cache()
test_focal_stack = torch.stack(focal_stack, dim=2) # shape of [B, C, S, H, W]
test_focus_dists = focus_dists
# Inference
test_input_dict = {'stack_rgb_img': test_focal_stack, 'focus_position':test_focus_dists, 'depth':gt_depth}
start = time.time()
test_outputs = net.module.inference(test_input_dict, aif_args)
val_time = val_time + (time.time() - start)
pred_depth = test_outputs['pred_depth']
pred_aif = test_outputs['pred_AiF_img']
# Depth score matrics
test_mask = np.squeeze(test_mask.data.cpu().numpy())
gt_depth = np.squeeze(gt_depth.data.cpu().numpy())
pred_depth = np.squeeze(pred_depth.data.cpu().numpy())
Avg_abs_rel = Avg_abs_rel + mask_abs_rel(pred_depth, gt_depth, test_mask)
Avg_sq_rel = Avg_sq_rel + mask_sq_rel(pred_depth, gt_depth, test_mask)
Avg_mse = Avg_mse + mask_mse(pred_depth, gt_depth, test_mask)
Avg_mae = Avg_mae + mask_mae(pred_depth, gt_depth, test_mask)
Avg_rmse = Avg_rmse + mask_rmse(pred_depth, gt_depth, test_mask)
Avg_rmse_log = Avg_rmse_log + mask_rmse_log(pred_depth, gt_depth, test_mask)
Avg_accuracy_1 = Avg_accuracy_1 + mask_accuracy_k(pred_depth, gt_depth, 1, test_mask)
Avg_accuracy_2 = Avg_accuracy_2 + mask_accuracy_k(pred_depth, gt_depth, 2, test_mask)
Avg_accuracy_3 = Avg_accuracy_3 + mask_accuracy_k(pred_depth, gt_depth, 3, test_mask)
# Save depth images
pred_depth = (pred_depth / gt_depth.max() * 255.).astype(np.uint8)
gt_depth = (gt_depth / gt_depth.max() * 255.).astype(np.uint8)
cv.imwrite(f'{result_img_dir}/img{idx}_pred.png', cv.applyColorMap(pred_depth, cv.COLORMAP_JET))
cv.imwrite(f'{result_img_dir}/img{idx}_gt.png', cv.applyColorMap(gt_depth, cv.COLORMAP_JET))
# AiF score matrics
gt_aif = aif.detach().clone().cpu()
pred_aif = pred_aif.detach().clone().cpu()
Avg_psnr = Avg_psnr + mask_psnr(pred_aif, gt_aif)
Avg_ssim = Avg_ssim + mask_ssim(pred_aif, gt_aif)
# Save AiF images
save_image(pred_aif, f'{result_img_dir}/img{idx}_pred_aif.png', normalize=True)
save_image(gt_aif, f'{result_img_dir}/img{idx}_gt_aif.png', normalize=True)
# Save model (last and best)
torch.save(net.state_dict(), f'{args["results_dir"]}/depth_net_last.pkl')
if Avg_mse / num_val < args['mse_min']:
args['mse_min'] = Avg_mse / num_val
torch.save(net.state_dict(), f'{args["results_dir"]}/depth_net_best.pkl')
if Avg_accuracy_1 / num_val > args['acc1_max']:
args['acc1_max'] = Avg_accuracy_1 / num_val
torch.save(net.state_dict(), f'{args["results_dir"]}/depth_net_best_acc1.pkl')
# Log scores
logging.info(f"Avg_abs_rel({epoch}): {Avg_abs_rel / num_val}")
logging.info(f"Avg_sq_rel({epoch}): {Avg_sq_rel / num_val}")
logging.info(f"Avg_mse({epoch}): {Avg_mse / num_val}")
logging.info(f"Avg_mae({epoch}): {Avg_mae / num_val}")
logging.info(f"Avg_rmse({epoch}): {Avg_rmse / num_val}")
logging.info(f"Avg_rmse_log({epoch}): {Avg_rmse_log / num_val}")
logging.info(f"Avg_accuracy_1({epoch}): {Avg_accuracy_1 / num_val}")
logging.info(f"Avg_accuracy_2({epoch}): {Avg_accuracy_2 / num_val}")
logging.info(f"Avg_accuracy_3({epoch}): {Avg_accuracy_3 / num_val}")
logging.info("\n")
logging.info(f"Avg_psnr({epoch}): {Avg_psnr / num_val}")
logging.info(f"Avg_ssim({epoch}): {Avg_ssim / num_val}")
logging.info("\n")
logging.info(f"AVG_time: {val_time / num_val}")
logging.info("\n")
if __name__=='__main__':
args = config()
train(args)