forked from brevans/vcf2fa
-
Notifications
You must be signed in to change notification settings - Fork 0
/
vcf2fa.py
194 lines (166 loc) · 6.44 KB
/
vcf2fa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
#!/usr/bin/env python
from os import path
from os import makedirs
from collections import defaultdict as dd
import re
import argparse
ambi = {'AC':'M', 'AG':'R', 'AT':'W', 'CG':'S', 'CT':'Y', 'GT':'K',
'CA':'M', 'GA':'R', 'TA':'W', 'GC':'S', 'TC':'Y', 'TG':'K',
'AA':'A', 'CC':'C', 'GG':'G', 'TT':'T'}
def m_dir(d):
try:
makedirs(d)
except OSError:
pass
def try_int(c):
try:
return int(c)
except ValueError:
return c
class rec(object):
def __init__ (self):
'''
container for previous, current, next objects
'''
self.up=0
self.curr=0
self.down=0
class Vcf(object):
'''
fVcf: POSITION SORTED vcf file name
vcf: a generator that walks over a vcf file
sample VCF line:
CHROM POS ID REF ALT QUAL FILTER INFO FORMAT sam1...samn
'''
def __init__(self, vcf_fh):
self.header_lines=[]
self.vcf_handle=vcf_fh
self.rec = rec()
l=''
#initialize samples, strip off vcf header
#stop at first line with real data
while True:
l = self.vcf_handle.readline()
if l.startswith("#CHROM"):
a=l.lstrip('#').rstrip().split('\t')
self.cols = a[:9]
self.samples = []
for sam in a[9:]:
sam_name = re.sub('\.bam$|\.sorted\.bam$', '', path.basename(sam))
self.samples.append(sam_name)
elif l.startswith("##"):
self.header_lines.append(l.rstrip())
else:
self.rec.up = 0
self.rec.curr = 0
self.rec.down = self.parse_vcf_line(l)
self.format = self.rec.down['FORMAT'].split(':')
break
def __iter__(self):
return self
def next(self):
'''
'''
if self.rec.curr != None:
self.rec.up = self.rec.curr
self.rec.curr = self.rec.down
self.rec.down = self.parse_vcf_line(self.vcf_handle.readline())
return self.rec.curr
else:
raise StopIteration()
def parse_vcf_line(self, line):
tmp = {}
vals = line.split()
while len(vals) == len(self.cols)+len(self.samples) and vals[7].startswith('INDEL'):
vals = self.vcf_handle.readline().split()
if len(vals) != len(self.cols)+len(self.samples):
return None
for i,v in zip(self.cols,vals[:9]):
tmp[i]=try_int(v)
for i,v in zip(self.samples, vals[9:]):
try:
tmp[i] = dict(zip(self.format, [try_int(x) for x in v.split(':')]))
except AttributeError:
tmp[i] = dict(zip(tmp['FORMAT'].split(':'), [try_int(x) for x in v.split(':')]))
return tmp
def vcf_gt_to_dna(snp, ind):
ref = snp['REF']
alt = snp['ALT']
gt = snp[ind]['GT']
poss_gts = [ref.upper()]+[x.upper() for x in alt.split(',')]
trans = dict(zip([str(x) for x in range(len(poss_gts))], poss_gts))
sam_dna = ambi[''.join([trans[x] for x in gt.split('/')])]
return sam_dna
def fill_ref(samples, mincov, cov, seqs, ref_bp):
for s,c in zip(samples,cov):
if c >= mincov:
seqs[s].append(ref_bp)
else:
seqs[s].append('N')
def fill_snp(samples, mincov, cov, seqs, snp):
for s,c in zip(samples,cov):
if c >= mincov:
seqs[s].append(vcf_gt_to_dna(snp, s))
else:
seqs[s].append('N')
def get_snp(vcf):
try:
snp = vcf.next()
except StopIteration:
snp = None
return snp
def make_fasta(mincov, mcb, vcf_fh):
vcf = Vcf(vcf_fh)
m_dir('consensus')
seqs = dd(lambda: [])
curr_chrom = ''
#get a snp
snp = get_snp(vcf)
for l in mcb:
#get info about current position
tmp = l.split()
if tmp[0] != curr_chrom:
if len(seqs) != 0:
out = open(path.join('consensus', '{}_consensus.fa'.format(curr_chrom)), 'w')
for s in seqs.keys():
#write multi fasta
out.write('>{}\n{}\n'.format(s, ''.join(seqs[s])))
out.close()
seqs = dd(lambda: [])
curr_chrom = tmp[0]
snp = get_snp(vcf)
#one and zero-based positions, vcf is 1-indexed
(pos0, pos1) = [int(x) for x in tmp[1:3]]
ref_bp = tmp[3]
cov = [int(x) for x in tmp[4:]]
#no more snps in vcf file!
if snp == None:
fill_ref(vcf.samples, mincov, cov, seqs, ref_bp)
#need to catch up to current SNP
elif pos1 < snp['POS'] and curr_chrom == snp['CHROM']:
fill_ref(vcf.samples, mincov, cov, seqs, ref_bp)
#caught up, add SNP, get the next one
elif pos1 == snp['POS'] and curr_chrom == snp['CHROM']:
fill_snp(vcf.samples, mincov, cov, seqs, snp)
snp = get_snp(vcf)
#shouldn't happen
elif pos1 > snp['POS'] and curr_chrom == snp['CHROM']:
print("this shouldn't happen!")
#bed file needs to catch up to snp
elif curr_chrom != snp['CHROM']:
fill_ref(vcf.samples, mincov, cov, seqs, ref_bp)
else:
print("wasn't expecting this!")
#write last curr_chrom's worth of data
out = open(path.join('consensus', '{}_consensus.fa'.format(curr_chrom)), 'w')
for s in seqs.keys():
#write multi fasta
out.write('>{}\n{}\n'.format(s, ''.join(seqs[s])))
out.close()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="generate a subfolder in the current directory of fasta files, each one a locus/chromosome, containing one sequence for each individual found in the vcf/bed files specified")
parser.add_argument("-m","--multicov_file", help="Your multicov file. Must be based off the ref_single_base.bed created by gen_bed_files.py and running bedtools. See readme for suggested bedtools command", type=argparse.FileType('r'), required=True)
parser.add_argument("-v","--vcf_file", help="The vcf file generated using the same bam files used to generate the multicov bed file", type=argparse.FileType('r'), required=True)
parser.add_argument("-c","--min_cov", help="The minimum required coverage for a base to not be masked in a sample's consensus with an 'N' ", type=int, default=7)
args = parser.parse_args()
make_fasta(args.min_cov, args.multicov_file, args.vcf_file)