-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain_TOD.py
366 lines (301 loc) · 15.3 KB
/
main_TOD.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
'''
Semi-Supervised Active Learning with Temporal Output Discrepancy.
Siyu Huang, Tianyang Wang, Haoyi Xiong, Jun Huan, Dejing Dou.
ICCV, 2021.
'''
# General
import os
import random
import argparse
import numpy as np
import importlib
# Torch
import torch
import torch.nn as nn
import torch.optim as optim
from torch.nn import functional as F
from torch.utils.data import DataLoader
import torch.optim.lr_scheduler as lr_scheduler
from torch.utils.data.sampler import SubsetRandomSampler
# Torchvison
import torchvision.transforms as T
import torchvision.models as models
from torchvision.datasets import CIFAR100, CIFAR10, SVHN, ImageFolder
# Custom
import models.resnet as resnet
from models.lossnet import *
from utils.sampler import SubsetSequentialSampler
def update_ema_variables(model, ema_model, alpha, global_step):
# Use the true average until the exponential average is more correct
alpha = min(1 - 1 / (global_step + 1), alpha)
for ema_param, param in zip(ema_model.parameters(), model.parameters()):
ema_param.data.mul_(alpha).add_(1 - alpha, param.data)
def LossPredLoss(input, target, margin=1.0, reduction='mean'):
assert len(input) % 2 == 0, 'the batch size is not even.'
assert input.shape == input.flip(0).shape
input = (input - input.flip(0))[:len(input)//2] # [l_1 - l_2B, l_2 - l_2B-1, ... , l_B - l_B+1], where batch_size = 2B
target = (target - target.flip(0))[:len(target)//2]
target = target.detach()
one = 2 * torch.sign(torch.clamp(target, min=0)) - 1 # 1 operation which is defined by the authors
if reduction == 'mean':
loss = torch.sum(torch.clamp(margin - one * input, min=0))
loss = loss / input.size(0) # Note that the size of input is already halved
elif reduction == 'none':
loss = torch.clamp(margin - one * input, min=0)
else:
NotImplementedError()
return loss
def train_epoch(models, criterion, optimizers, dataloaders, epoch, epoch_loss):
models['backbone'].train()
if AUXILIARY == 'TOD':
models['ema'].train()
global iters
for data in dataloaders['train']:
inputs = data[0].cuda()
labels = data[1].cuda()
iters += 1
optimizers['backbone'].zero_grad()
# task loss
scores, cons_scores, features, features_list = models['backbone'](inputs)
target_loss = criterion(scores, labels)
loss = torch.sum(target_loss) / target_loss.size(0)
# unsupervised loss
if AUXILIARY == 'TOD':
u_inputs, _ = next(iter(dataloaders['extra']))
u_inputs = u_inputs.cuda()
u_scores, cons_u_scores, features_u, u_features_list = models['backbone'](u_inputs)
ema_scores, _, _, _ = models['ema'](inputs)
ema_u_scores, _, _, _ = models['ema'](u_inputs)
res_loss = F.mse_loss(scores, cons_scores) + F.mse_loss(u_scores, cons_u_scores)
consistency_loss = F.mse_loss(cons_scores, ema_scores) + F.mse_loss(cons_u_scores, ema_u_scores)
loss = loss + WEIGHT * (res_loss + consistency_loss)
loss.backward()
optimizers['backbone'].step()
if AUXILIARY == 'TOD':
update_ema_variables(models['backbone'], models['ema'], 0.999, iters)
def test(models, dataloaders, mode='val'):
assert mode == 'val' or mode == 'test'
models['backbone'].eval()
total = 0
correct = 0
with torch.no_grad():
for (inputs, labels) in dataloaders[mode]:
inputs = inputs.cuda()
labels = labels.cuda()
scores, _, _, _ = models['backbone'](inputs)
_, preds = torch.max(scores.data, 1)
total += labels.size(0)
correct += (preds == labels).sum().item()
return 100 * correct / total
def train(models, criterion, optimizers, schedulers, dataloaders, num_epochs, epoch_loss, cycle):
print('>> Train a Model...')
best_acc = 0.
for epoch in range(num_epochs):
train_epoch(models, criterion, optimizers, dataloaders, epoch, epoch_loss)
schedulers['backbone'].step()
if epoch % 20 == 0 or epoch == 199:
acc = test(models, dataloaders, 'test')
if best_acc < acc:
best_acc = acc
print(DATASET, 'Cycle:', cycle+1, 'Epoch:', epoch, '---', 'Val Acc: {:.2f} \t Best Acc: {:.2f}'.format(acc, best_acc), flush=True)
print('>> Finished.')
def get_uncertainty(models, unlabeled_loader):
models['backbone'].eval()
models['cod'].eval()
uncertainty = torch.tensor([]).cuda()
with torch.no_grad():
for (inputs, labels) in unlabeled_loader:
inputs = inputs.cuda()
labels = labels.cuda()
scores, _, _, _ = models['backbone'](inputs)
if SAMPLING == 'TOD':
scores = F.softmax(scores, dim=1)
cod_scores, _, _, _ = models['cod'](inputs)
cod_scores = F.softmax(cod_scores, dim=1)
pred_loss = (scores - cod_scores).pow(2).sum(1) / 2
uncertainty = torch.cat((uncertainty, pred_loss), dim=0)
return uncertainty.cpu()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Semi-Supervised Active Learning')
parser.add_argument('--config', default='cifar10', type=str, help='dataset config path')
parser.add_argument('--sampling', default='TOD', type=str, help='data sampling method', choices=['RANDOM', 'TOD'])
parser.add_argument('--auxiliary', default='TOD', type=str, help='auxiliary training loss', choices=['NONE', 'TOD'])
args = parser.parse_args()
config = importlib.import_module('config.'+args.config)
config.SAMPLING = args.sampling # Random | TOD
config.AUXILIARY = args.auxiliary # NONE | TOD
to_import = [name for name in dir(config) if not name.startswith('_')]
globals().update({name: getattr(config, name) for name in to_import})
# Data
if DATASET == 'cifar10':
train_transform = T.Compose([
T.RandomHorizontalFlip(),
T.RandomCrop(size=32, padding=4),
T.ToTensor(),
T.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010])
])
test_transform = T.Compose([
T.ToTensor(),
T.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010])
])
data_train = CIFAR10(DATA_DIR, train=True, download=False, transform=train_transform)
data_unlabeled = CIFAR10(DATA_DIR, train=True, download=False, transform=test_transform)
data_test = CIFAR10(DATA_DIR, train=False, download=False, transform=test_transform)
elif DATASET == 'cifar100':
train_transform = T.Compose([
T.RandomHorizontalFlip(),
T.RandomCrop(size=32, padding=4),
T.ToTensor(),
T.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010])
])
test_transform = T.Compose([
T.ToTensor(),
T.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010])
])
data_train = CIFAR100(DATA_DIR, train=True, download=False, transform=train_transform)
data_unlabeled = CIFAR100(DATA_DIR, train=True, download=False, transform=test_transform)
data_test = CIFAR100(DATA_DIR, train=False, download=False, transform=test_transform)
elif DATASET == 'svhn':
train_transform = T.Compose([
T.RandomHorizontalFlip(),
T.RandomCrop(size=32, padding=4),
T.ToTensor(),
T.Normalize([0.4310, 0.4302, 0.4463], [0.1965, 0.1984, 0.1992])
])
test_transform = T.Compose([
T.ToTensor(),
T.Normalize([0.4310, 0.4302, 0.4463], [0.1965, 0.1984, 0.1992])
])
data_train = SVHN(root=DATA_DIR, split='train', transform=train_transform, download=False)
data_unlabeled = SVHN(root=DATA_DIR, split='train', transform=train_transform, download=False)
data_test = SVHN(root=DATA_DIR, split='test', transform=test_transform, download=False)
elif DATASET == 'caltech101':
train_transform = T.Compose(
[
T.Resize((256, 256)),
T.CenterCrop(224),
T.RandomHorizontalFlip(),
T.ToTensor(),
T.Normalize([0.5020, 0.5020, 0.5020], [1.0, 1.0, 1.0])
])
test_transform = T.Compose(
[
T.Resize((256, 256)),
T.CenterCrop(224),
T.ToTensor(),
T.Normalize([0.5020, 0.5020, 0.5020], [1.0, 1.0, 1.0])
])
ratio = [0.9, 0.1]
dataset = ImageFolder(DATA_DIR)
character = [[] for i in range(len(dataset.classes))]
for x, y in dataset.imgs: #.samples: use .imgs for torchvision 0.2.0, and .samples for 0.4.2
#if y != 0: # remove the Background class, will incur cuda issue
character[y].append(x)
del character[0] # use this to remove the Background class
train_inputs, val_inputs, test_inputs = [], [], []
train_labels, val_labels, test_labels = [], [], []
for i, data in enumerate(character):
num_sample_train = int(len(data) * ratio[0])
num_sample_val = len(data) - num_sample_train
index = list(range(len(data)))
random.shuffle(index)
train_index = index[:num_sample_train]
val_index = index[num_sample_train:num_sample_train+num_sample_val]
for x in train_index:
train_inputs.append(str(data[x]))
train_labels.append(i)
for x in val_index:
val_inputs.append(str(data[x]))
val_labels.append(i)
from utils.custom_dataset import MyDataset
data_train = MyDataset(train_inputs, train_labels, transform=train_transform)
data_unlabeled = MyDataset(train_inputs, train_labels, transform=train_transform)
data_test = MyDataset(val_inputs, val_labels, transform=test_transform)
for trial in range(TRIALS):
global iters
iters = 0
indices = list(range(NUM_TRAIN))
random.shuffle(indices)
labeled_set = indices[:START]
unlabeled_set = indices[START:]
train_loader = DataLoader(data_train, batch_size=BATCH, # BATCH
sampler=SubsetRandomSampler(labeled_set),
pin_memory=True)
test_loader = DataLoader(data_test, batch_size=BATCH)
extra_loader = DataLoader(data_train, batch_size=BATCH,
sampler=SubsetSequentialSampler(unlabeled_set),
pin_memory=True)
dataloaders = {'train': train_loader, 'test': test_loader, 'extra': extra_loader}
# Model
if DATASET == 'caltech101':
import models.imagenet_resnet as in_resnet
backbone_net = in_resnet.ResNet18(num_classes=CLASS).cuda()
pretrained_dict = torch.load('./resnet18-5c106cde.pth')
model_dict = backbone_net.state_dict()
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
model_dict.update(pretrained_dict)
backbone_net.load_state_dict(model_dict)
cod_model = in_resnet.ResNet18(num_classes=CLASS).cuda()
ema_model = in_resnet.ResNet18(num_classes=CLASS).cuda()
else:
backbone_net = resnet.ResNet18(num_classes=CLASS).cuda()
cod_model = resnet.ResNet18(num_classes=CLASS).cuda()
ema_model = resnet.ResNet18(num_classes=CLASS).cuda()
for param in cod_model.parameters():
param.detach_()
for param in ema_model.parameters():
param.detach_()
models = {'backbone': backbone_net, 'ema': ema_model, 'cod': cod_model}
torch.backends.cudnn.benchmark = True
# Active learning cycles
for cycle in range(CYCLES):
if cycle > 0:
checkpoint = torch.load('./weights/{}_auxiliary_{}_sampling_{}_trial{}_cycle{}.pth'.format(DATASET, AUXILIARY, SAMPLING, trial+1, cycle))
models['cod'].load_state_dict(checkpoint['state_dict_backbone'])
# Loss, criterion and scheduler (re)initialization
criterion = nn.CrossEntropyLoss(reduction='none')
optim_backbone = optim.SGD(models['backbone'].parameters(), lr=LR, momentum=MOMENTUM, weight_decay=WDECAY)
sched_backbone = lr_scheduler.MultiStepLR(optim_backbone, milestones=MILESTONES)
optimizers = {'backbone': optim_backbone}
schedulers = {'backbone': sched_backbone}
# Training and test
train(models, criterion, optimizers, schedulers, dataloaders, EPOCH, EPOCHL, cycle)
acc = test(models, dataloaders, mode='test')
print('{} auxiliary:{} sampling:{} Trial:{}/{} || Cycle:{}/{} || Label set size:{} || Test acc:{:.2f}'.format(DATASET, AUXILIARY, SAMPLING, trial+1, TRIALS, cycle+1, CYCLES, len(labeled_set), acc), flush=True)
# Active sampling
random.shuffle(unlabeled_set)
if SAMPLING == 'RANDOM':
subset = unlabeled_set[:ADDENDUM]
labeled_set += subset
unlabeled_set = unlabeled_set[ADDENDUM:]
else:
subset = unlabeled_set[:SUBSET]
# Create unlabeled dataloader for the unlabeled subset
unlabeled_loader = DataLoader(data_unlabeled, batch_size=BATCH,
sampler=SubsetSequentialSampler(subset),
pin_memory=True)
# Measure uncertainty of each data points in the subset
uncertainty = get_uncertainty(models, unlabeled_loader)
# Index in ascending order
arg = np.argsort(uncertainty)
# Update the labeled dataset and the unlabeled dataset, respectively
if cycle > 0:
labeled_set += list(torch.tensor(subset)[arg][-ADDENDUM:].numpy())
unlabeled_set = list(torch.tensor(subset)[arg][:-ADDENDUM].numpy()) + unlabeled_set[SUBSET:]
else:
labeled_set += list(torch.tensor(subset)[arg][:ADDENDUM].numpy())
unlabeled_set = list(torch.tensor(subset)[arg][ADDENDUM:].numpy()) + unlabeled_set[SUBSET:]
# Create a new dataloader for the updated labeled dataset
dataloaders['train'] = DataLoader(data_train, batch_size=BATCH,
sampler=SubsetRandomSampler(labeled_set),
pin_memory=True)
dataloaders['extra'] = DataLoader(data_train, batch_size=BATCH,
sampler=SubsetRandomSampler(unlabeled_set),
pin_memory=True)
if not os.path.exists('weights'):
os.makedirs('weights')
torch.save({
'cycle': cycle + 1,
'state_dict_backbone': models['backbone'].state_dict()
},
'./weights/{}_auxiliary_{}_sampling_{}_trial{}_cycle{}.pth'.format(DATASET, AUXILIARY, SAMPLING, trial+1, cycle+1))