Skip to content

Latest commit

 

History

History
52 lines (35 loc) · 1.93 KB

README.md

File metadata and controls

52 lines (35 loc) · 1.93 KB

Subspace Multinomial Model

  • Learning document representations using subspace multinomial model. See paper
  • This version of the code implements the same model, but with Adagrad optimization. This results in a slightly faster convergence with relatively lower memory requirements.

Requirements

  • python3.6
  • pytorch, numpy, scipy, scikit-learn

Data preparation

  • python TwentyNewsDataset.py
  • This will download the data from the web and converts it into scipy.sparse matrix.

Training

  • Input data: scipy.sparse matrix of shape n_words x n_docs

  • python run_smm_20news.py train -o exp/ -trn 100 -lw 1e-04 -rt l1 -lt 1e-4 -k 100

  • The trained model is saved as exp/lw_1e-40_l1_1e-04_100/model_T100.pt

Positional parameters:

  • phase: train or extract

Hyper parameters:

  • -lw : l2 regularization const for i-vectors
  • -rt : type of regularization for bases (l1 or l2)
  • -lt : regularization const for bases
  • -k : i-vector dimension

Other options:

  • -o : path to output directory
  • -trn: training iterations
  • --ovr: over-write existing experiment directory

Extracting i-vectors:

  • python run_smm_20news.py extract -m exp/lw_1e-04_l1_1e-04_100/model_T100.pt -xtr 30 --nth 2

  • The document i-vectors are saved in exp/lw_1e-40_l1_1e-04_100/ivecs/

Other options:

  • -xtr: extraction iterations.
  • --nth: save every n-th i-vector while extraction.

Classification using GLC

  • python train_and_clf.py exp/lw_1e-40_l1_1e-04_100/train_model_T100_e30.npy
  • Test data and labels are automatically read.

On GPU

  • prefix with CUDA_VISIBLE_DEVICES=<device_id> followed by python run_smm_20news.py