forked from wadhwasahil/Relation_Extraction
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCNN.py
414 lines (370 loc) · 17.1 KB
/
CNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import data_helpers
import numpy as np
from nltk.tokenize import TweetTokenizer
from nltk.tokenize.punkt import PunktSentenceTokenizer
import tensorflow as tf
import pandas as pd
import re
import itertools
import math
import traceback
import gensim, logging
tf.flags.DEFINE_integer("distance_dim", 5, "Dimension of position vector")
tf.flags.DEFINE_integer("embedding_size", 50, "Dimension of word embedding")
tf.flags.DEFINE_integer("n1", 200, "Hidden layer1")
tf.flags.DEFINE_integer("n2", 100, "Hidden layer2")
tf.flags.DEFINE_integer("batch_size", 64, "Batch Size (default: 64)")
tf.flags.DEFINE_float("lr", 0.0001, "Learning rate")
tf.flags.DEFINE_boolean("allow_soft_placement", True, "Allow device soft device placement")
tf.flags.DEFINE_boolean("log_device_placement", False, "Log placement of ops on devices")
tf.flags.DEFINE_string("filter_sizes", "3,4,5", "Comma-separated filter sizes (default: '3,4,5')")
tf.flags.DEFINE_integer("num_filters", 128, "Number of filters per filter size (default: 128)")
tf.flags.DEFINE_float("dropout_keep_prob", 0.4, "Dropout keep probability (default: 0.5)")
tf.flags.DEFINE_integer("num_epochs", 1000, "Number of training epochs (default: 200)")
tf.flags.DEFINE_integer("checkpoint_every", 100, "Save model after this many steps (default: 100)")
tf.flags.DEFINE_float("l2_reg_lambda", 0.0, "L2 regularizaion lambda (default: 0.0)")
tf.flags.DEFINE_integer("evaluate_every", 100, "Evaluate model on dev set after this many steps (default: 100)")
tf.flags.DEFINE_integer("window_size", 3, "n-gram")
tf.flags.DEFINE_integer("sequence_length", 204, "max tokens b/w entities")
tf.flags.DEFINE_integer("K", 4, "K-fold cross validation")
tf.flags.DEFINE_float("early_threshold", 0.5, "Threshold to stop the training")
FLAGS = tf.flags.FLAGS
tokenizer = TweetTokenizer()
invalid_word = "UNK"
'''By default returns UNK if input given is empty'''
model = gensim.models.Word2Vec.load("~/Desktop/Relation_Extraction/model")
def word2vec(word):
return model[word]
def get_legit_word(str, flag):
if flag == 0:
for word in reversed(str):
if word in [".", "!"]:
return invalid_word
if data_helpers.is_word(word):
return word
return invalid_word
if flag == 1:
for word in str:
if word in [".", "!"]:
return invalid_word
if data_helpers.is_word(word):
return word
return invalid_word
def get_sentences(text):
indices = []
for start, end in PunktSentenceTokenizer().span_tokenize(text):
indices.append((start, end))
return indices
def get_tokens(words):
valid_words = []
for word in words:
if data_helpers.is_word(word) and word in model.vocab:
valid_words.append(word)
return valid_words
def get_left_word(message, start):
i = start - 1
is_space = 0
str = ""
while i > -1:
if message[i].isspace() and is_space == 1 and str.strip():
break
if message[i].isspace() and is_space == 1 and not data_helpers.is_word(str):
is_space = 0
if message[i].isspace():
is_space = 1
str += message[i]
i -= 1
str = str[::-1]
return tokenizer.tokenize(str)
def get_right_word(message, start):
i = start
is_space = 0
str = ""
while i < len(message):
if message[i].isspace() and is_space == 1 and str.strip():
break
if message[i].isspace() and is_space == 1 and not data_helpers.is_word(str):
is_space = 0
if message[i].isspace():
is_space = 1
str += message[i]
i += 1
return tokenizer.tokenize(str)
# def w2v(word):
# if word != "UNK":
# word = word.lower()
# index = data_helpers.word2id(word)
# if index == -1:
# raise ValueError("{} doesn't exist in the vocablury.".format(word))
# else:
# return word_vector[0][index]
count = 100
def lexical_level_features(df):
for index, row in df.iterrows():
try:
# if index >= count:
# break
print("======================================")
print(index)
message = row['Message'].lower()
if not message:
continue
if row['drug-offset-start'] < row['sideEffect-offset-start']:
start = (row['drug-offset-start'], row['drug-offset-end'])
else:
start = (row['sideEffect-offset-start'], row['sideEffect-offset-end'])
if row['drug-offset-end'] > row['sideEffect-offset-end']:
end = (row['drug-offset-start'], row['drug-offset-end'])
else:
end = (row['sideEffect-offset-start'], row['sideEffect-offset-end'])
sent = get_sentences(message)
start1, start2 = start[0], end[0]
end1, end2 = start[1], end[1]
beg = -1
for l, r in sent:
if (start1 >= l and start1 <= r) or (end1 >= l and end1 <= r) or (start2 >= l and start2 <= r) or (
end2 >= l and end2 <= r):
if beg == -1:
beg = l
fin = r
print(message[beg:fin])
entity1, entity2 = message[start1:end1], message[start2:end2]
l1 = [get_legit_word([word], 1) for word in tokenizer.tokenize(entity1)]
l2 = [get_legit_word([word], 1) for word in tokenizer.tokenize(entity2)]
# TODO add PCA for phrases
temp = np.zeros(FLAGS.embedding_size)
valid_words = 0
print(entity1)
print(l1)
for word in l1:
if word != "UNK" and data_helpers.is_word(word) and word in model.vocab:
valid_words += 1
temp = np.add(temp, word2vec(word))
if valid_words == 0:
continue
l1 = temp / float(valid_words)
temp = np.zeros(FLAGS.embedding_size)
valid_words = 0
print(entity2)
print(l2)
for word in l2:
if word != "UNK" and data_helpers.is_word(word) and word in model.vocab:
valid_words += 1
temp = np.add(temp, word2vec(word))
if valid_words == 0:
continue
lword1 = lword2 = rword1 = rword2 = np.zeros(50)
l2 = temp / float(valid_words)
if get_legit_word(get_left_word(message, start1), 0) in model.vocab:
lword1 = word2vec(get_legit_word(get_left_word(message, start1), 0))
if get_legit_word(get_left_word(message, start2), 0) in model.vocab:
lword2 = word2vec(get_legit_word(get_left_word(message, start2), 0))
if get_legit_word(get_right_word(message, end1), 1) in model.vocab:
rword1 = word2vec(get_legit_word(get_right_word(message, end1), 1))
if get_legit_word(get_right_word(message, end2), 1) in model.vocab:
rword2 = word2vec(get_legit_word(get_right_word(message, end2), 1))
# l3 = np.divide(np.add(lword1, rword1), 2.0)
# l4 = np.divide(np.add(lword2, rword2), 2.0)
print(get_legit_word(get_left_word(message, start1), 0), get_legit_word(get_left_word(message, start2), 0))
print(get_legit_word(get_right_word(message, end1), 1), get_legit_word(get_right_word(message, end2), 1))
# tokens in between
l_tokens = []
r_tokens = []
if beg != -1:
l_tokens = get_tokens(tokenizer.tokenize(message[beg:start1]))
if fin != -1:
r_tokens = get_tokens(tokenizer.tokenize(message[end2:fin]))
in_tokens = get_tokens(tokenizer.tokenize(message[end1:start2]))
print(l_tokens, in_tokens, r_tokens)
tot_tokens = len(l_tokens) + len(in_tokens) + len(r_tokens) + 2
while tot_tokens < FLAGS.sequence_length:
r_tokens.append("UNK")
tot_tokens += 1
# left tokens
l_matrix = []
l_len = len(l_tokens)
r_len = len(r_tokens)
m_len = len(in_tokens)
for idx, token in enumerate(l_tokens):
word_vec, pv1, pv2 = word2vec(token), pos_vec[pivot + (idx - l_len)], pos_vec[
pivot + (idx - l_len - 1 - m_len)]
l_matrix.append([word_vec, pv1, pv2])
# middle tokens
in_matrix = []
for idx, token in enumerate(in_tokens):
word_vec, pv1, pv2 = word2vec(token), pos_vec[idx + 1], pos_vec[idx - m_len + pivot]
in_matrix.append([word_vec, pv1, pv2])
# right tokens
r_matrix = []
for idx, token in enumerate(r_tokens):
if token == "UNK":
word_vec, pv1, pv2 = extra_emb, pos_vec[idx + m_len + 2], pos_vec[idx + 1]
r_matrix.append([word_vec, pv1, pv2])
else:
word_vec, pv1, pv2 = word2vec(token), pos_vec[idx + m_len + 2], pos_vec[idx + 1]
r_matrix.append([word_vec, pv1, pv2])
tri_gram = []
llen = len(l_matrix)
mlen = len(in_matrix)
rlen = len(r_matrix)
dist = llen + 1
if llen > 0:
if llen > 1:
tri_gram.append(
np.hstack((beg_emb, l_matrix[0][0], l_matrix[1][0], l_matrix[0][1], l_matrix[0][2])))
for i in range(1, len(l_matrix) - 1):
tri_gram.append(
np.hstack((l_matrix[i - 1][0], l_matrix[i][0], l_matrix[i + 1][0], l_matrix[i][1],
l_matrix[i][2])))
tri_gram.append(np.hstack((l_matrix[llen - 2][0], l_matrix[llen - 1][0], l1, l_matrix[llen - 1][1],
l_matrix[llen - 2][2])))
else:
tri_gram.append(
np.hstack((beg_emb, l_matrix[0][0], l1, l_matrix[0][1], l_matrix[0][2])))
if mlen > 0:
tri_gram.append(
np.hstack((l_matrix[llen - 1][0], l1, in_matrix[0][0], pos_vec[0], pos_vec[pivot - dist])))
else:
tri_gram.append(np.hstack((l_matrix[llen - 1][0], l1, l2, pos_vec[0], pos_vec[pivot - dist])))
else:
if mlen > 0:
tri_gram.append(np.hstack((beg_emb, l1, in_matrix[0][0], pos_vec[0], pos_vec[pivot - dist])))
else:
tri_gram.append(np.hstack((beg_emb, l1, l2, pos_vec[0], pos_vec[pivot - dist])))
if mlen > 0:
if mlen > 1:
tri_gram.append(np.hstack((l1, in_matrix[0][0], in_matrix[1][0], in_matrix[0][1], in_matrix[0][2])))
for i in range(1, len(in_matrix) - 1):
tri_gram.append(np.hstack((in_matrix[i - 1][0], in_matrix[i][0], in_matrix[i + 1][0],
in_matrix[i][1], in_matrix[i][2])))
tri_gram.append(np.hstack((in_matrix[mlen - 2][0], in_matrix[mlen - 1][0], l2,
in_matrix[mlen - 1][1], in_matrix[mlen - 2][2])))
else:
tri_gram.append(np.hstack((l1, in_matrix[0][0], l2, in_matrix[0][1], in_matrix[0][2])))
if rlen > 0:
tri_gram.append(np.hstack((in_matrix[mlen - 1][0], l2, r_matrix[0][0], pos_vec[dist], pos_vec[0])))
else:
tri_gram.append(np.hstack((in_matrix[mlen - 1][0], l2, end_emb, pos_vec[dist], pos_vec[0])))
else:
if rlen > 0:
tri_gram.append(np.hstack((l1, l2, r_matrix[0][0], pos_vec[dist], pos_vec[0])))
else:
tri_gram.append(np.hstack((l1, l2, end_emb, pos_vec[dist], pos_vec[0])))
if rlen > 0:
if rlen > 1:
tri_gram.append(np.hstack((l2, r_matrix[0][0], r_matrix[1][0], r_matrix[0][1], r_matrix[0][2])))
for i in range(1, len(r_matrix) - 1):
tri_gram.append(np.hstack(
(r_matrix[i - 1][0], r_matrix[i][0], r_matrix[i + 1][0], r_matrix[i][1], r_matrix[i][2])))
tri_gram.append(np.hstack((r_matrix[rlen - 2][0], r_matrix[rlen - 1][0], end_emb,
r_matrix[rlen - 1][1], r_matrix[rlen - 2][2])))
else:
tri_gram.append(np.hstack((l2, r_matrix[0][0], end_emb, r_matrix[0][1], r_matrix[0][2])))
# tri_gram.append(np.hstack((l1, in_matrix[0][0], in_matrix[1][0], in_matrix[0][1], in_matrix[0][2])))
#
# for idx in range(1, mlen - 1):
# tri_gram.append(
# np.hstack((in_matrix[idx - 1][0], in_matrix[idx][0], in_matrix[idx + 1][0], in_matrix[idx][1], in_matrix[idx][2])))
# tri_gram.append(
# np.hstack((in_matrix[mlen - 2][0], in_matrix[mlen - 1][0], l2, in_matrix[mlen - 1][1], in_matrix[mlen - 1][2])))
# tri_gram.append(np.hstack((in_matrix[mlen - 1][0], l2, end_emb, pos_vec_entities[2], pos_vec_entities[3])))
print("======================================")
# lf = np.vstack((l1, l2, l3, l4))
relation = row['relType']
print(np.asarray(tri_gram).shape)
if relation == "valid":
y = [0.0, 1.0]
else:
y = [1.0, 0.0]
yield np.asarray((np.asarray(tri_gram), np.asarray(y)))
except Exception as e:
traceback.print_exc()
def get_batches():
print("Loading train data...")
lexical_features = lexical_level_features(df)
batch_iterator = data_helpers.batch_iter(lexical_features, FLAGS.batch_size, FLAGS.num_epochs)
return batch_iterator
def get_batches_test():
print("Loading test data...")
df = data_helpers.read_data("/home/sahil/ML-bucket/test.csv")
lexical_features = lexical_level_features(df)
batch_iterator = data_helpers.batch_iter(lexical_features, FLAGS.batch_size, 1, shuffle=False)
return batch_iterator
def get_validation_data():
df = data_helpers.read_data("/home/sahil/ML-bucket/data/validation.csv")
lexical_features = lexical_level_features(df)
X_val = list()
Y_val = list()
for iter in lexical_features:
X_val.append(iter[0])
Y_val.append(iter[1])
return np.asarray(X_val), np.asarray(Y_val)
df = data_helpers.read_data()
np.random.seed(42)
pivot = 2 * FLAGS.sequence_length + 1
pos_vec = np.random.uniform(-1, 1, (pivot + 1, FLAGS.distance_dim))
# pos_vec_entities = np.random.uniform(-1, 1, (4, FLAGS.distance_dim))
# beginning and end of sentence embeddings
beg_emb = np.random.uniform(-1, 1, FLAGS.embedding_size)
end_emb = np.random.uniform(-1, 1, FLAGS.embedding_size)
extra_emb = np.random.uniform(-1, 1, FLAGS.embedding_size)
# sequence_length = 0
# ain = ""
'''Find the max length b/w entities'''
# for index, row in df.iterrows():
# message = row['Message']
# if not message:
# continue
# if row['drug-offset-start'] < row['sideEffect-offset-start']:
# start = (row['drug-offset-start'], row['drug-offset-end'])
# else:
# start = (row['sideEffect-offset-start'], row['sideEffect-offset-end'])
#
# if row['drug-offset-end'] > row['sideEffect-offset-end']:
# end = (row['drug-offset-start'], row['drug-offset-end'])
# else:
# end = (row['sideEffect-offset-start'], row['sideEffect-offset-end'])
#
# start1, start2 = start[0], end[0]
# end1, end2 = start[1], end[1]
# str = ""
# sent = get_sentences(message)
# beg = -1
# for l, r in sent:
# if (start1 >= l and start1 <= r) or (end1 >= l and end1 <= r) or (start2 >= l and start2 <= r) or (
# end2 >= l and end2 <= r):
# if beg == -1:
# beg = l
# fin = r
# str += message[l:r]
# if beg != -1:
# l_tokens = get_tokens(tokenizer.tokenize(message[beg:start1]))
# if fin != -1:
# r_tokens = get_tokens(tokenizer.tokenize(message[end2:fin]))
# in_tokens = get_tokens(tokenizer.tokenize(message[end1:start2]))
# tot_len = len(l_tokens) + len(in_tokens) + len(r_tokens)
# entity1 = message[start1:end1]
# entity2 = message[start2:end2]
# if tot_len > sequence_length:
# ain = (tot_len, entity1, entity2, message[beg:fin])
# sequence_length = max(sequence_length, tot_len)
#
# print(sequence_length)
# print(ain)
def hack():
df = pd.read_csv("/home/sahil/Downloads/test.csv")
for index, row in df.iterrows():
arr = [[float(row['x1']), float(row['x2']), float(row['x3'])]]
y = float(row['y'])
if y == 0.0:
y = [1.0, 0.0]
else:
y = [0.1, 1.0]
yield np.asarray((np.asarray(arr), np.asarray(y)))
def fun():
r = hack()
s = data_helpers.batch_iter(r, 64, 1)
return s