-
Notifications
You must be signed in to change notification settings - Fork 12
/
dataloader.py
93 lines (74 loc) · 3.48 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import os
import numpy as np
import torch
from torch.utils import data
from PIL import Image
from torchvision.transforms import Compose, ToTensor, Normalize
class MaskToTensor(object):
def __call__(self, img):
return torch.from_numpy(np.array(img, dtype=np.int32)).long()
class ATLANTIS(data.Dataset):
def __init__(self, root, split, joint_transform=None, padding_size=0):
super(ATLANTIS, self).__init__()
self.root = root
self.split = split
self.images_base = os.path.join(self.root, "images", self.split)
self.masks_base = os.path.join(self.root, "masks", self.split)
self.items_list = self.get_images_list(self.images_base, self.masks_base)
self.joint_transform = joint_transform
mean_std = ([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
image_transforms_list = [ToTensor(), Normalize(*mean_std)]
self.image_transforms = Compose(image_transforms_list)
self.label_transforms = MaskToTensor()
self.padding_size = padding_size
# self.id_to_trainid = { 3: 0, 4: 1, 7: 2, 9: 3, 10: 4, 11: 5, 12: 6, 13: 7, 16: 8, 17: 9,
# 18: 10, 19: 11, 20: 12, 21: 13, 22: 14, 23: 15, 24: 16, 26: 17, 29: 18, 30: 19,
# 32: 20, 33: 21, 34: 22, 35: 23, 36: 24, 38: 25, 39: 26, 40: 27, 43: 28, 44: 29,
# 45: 30, 53: 31, 54: 32, 55: 33, 56: 34}
def get_images_list(self, images_base, masks_base):
items_list = []
for root, dirs, files in os.walk(images_base, topdown=True):
mask_root = os.path.join(masks_base, os.path.split(root)[1])
for name in files:
if name.endswith(".jpg"):
mask_name = name.replace(".jpg", ".png")
img_file = os.path.join(root, name)
lbl_file = os.path.join(mask_root, mask_name)
items_list.append({
"image": img_file,
"label": lbl_file,
"name": name
})
return items_list
def __getitem__(self, index):
image_path = self.items_list[index]["image"]
label_path = self.items_list[index]["label"]
name = self.items_list[index]["name"]
image = Image.open(image_path).convert("RGB")
width, height = image.size
label = Image.open(label_path)
if self.joint_transform:
image, label = self.joint_transform(image, label)
image = self.image_transforms(image)
label = self.label_transforms(label)
if self.split == "test":
top_pad = self.padding_size - height
right_pad = self.padding_size - width
image = np.lib.pad(image, ((0, 0), (top_pad, 0), (0, right_pad)), mode='constant', constant_values=0)
image = torch.from_numpy(image)
label_copy = label - 1
label_copy[label_copy == -1] = 255
# label_copy = 255 * np.ones(label.shape, dtype=np.uint8)
# for k, v in self.id_to_trainid.items():
# label_copy[label == k] = v
return image, label_copy, name, width, height
def __len__(self):
return len(self.items_list)
def main():
dataset = ATLANTIS("./atlantis", "test", padding_size=768)
print(len(dataset))
dataiter = iter(dataset)
image, mask, name, width, height = next(dataiter)
print(image.shape, mask.shape, name, (height, width))
if __name__ == "__main__":
main()