-
Notifications
You must be signed in to change notification settings - Fork 43
/
utils.py
765 lines (664 loc) · 31.9 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
# !/usr/bin/env python
# -*- coding: UTF-8 -*-
import datetime
import logging
import os
import torch
from PIL import Image
import numpy as np
import cv2
import sys
import pickle
import gc
from huggingface_hub import hf_hub_download
try:
from moviepy.editor import VideoFileClip, AudioFileClip
except:
try:
from moviepy import VideoFileClip, AudioFileClip
except:
from moviepy import *
import random
from .src.utils.mp_utils import LMKExtractor
from .src.utils.motion_utils import motion_sync
from .src.utils.util import save_videos_grid, crop_and_pad,crop_and_pad_rectangle,center_crop
from .echomimic_v2.src.utils.dwpose_util import draw_pose_select_v2
from comfy.utils import common_upscale,ProgressBar
import folder_paths
import shutil
weight_dtype = torch.float16
cur_path = os.path.dirname(os.path.abspath(__file__))
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
tensorrt_lite= os.path.join(folder_paths.get_input_directory(),"tensorrt_lite")
def process_video_v2(ref_image_pil, uploaded_audio, width, height, length, seed,
context_frames, context_overlap, cfg, steps, sample_rate, fps, pipe,
save_video, pose_dir, audio_file_prefix,visualizer,video_images):
origin_h = height
origin_w = width
# 处理输入图片的尺寸
panding_img=img_padding(height, width, ref_image_pil) # 不管输出图片是何种尺寸,为保证图片质量,将输入图片转为为正方形,横裁切,竖填充,长宽为输出尺寸最大
infer_image_pil=Image.fromarray(cv2.cvtColor(panding_img,cv2.COLOR_BGR2RGB))
#将高宽改成最大图幅,方便裁切
height = max(height,width)
width = max(height, width)
if visualizer and isinstance(video_images,torch.Tensor):
logging.info("***** start infer video to npy files for drive pose ! ***** ")
video_len, _, _, _ = video_images.size()
if video_len < 50:
raise "input video has not much frames for driver,change your input video!"
else:
tensor_list = list(torch.chunk(video_images, chunks=video_len))
input_frames_cv2 = [img_padding(height,width,i) for i in tensor_list]
pose_dir = os.path.join(tensorrt_lite, audio_file_prefix)
if not os.path.exists(pose_dir):
os.makedirs(pose_dir)
else:
timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
pose_dir = os.path.join(tensorrt_lite, f"{audio_file_prefix}_{timestamp}")
os.makedirs(pose_dir)
visualizer.move_to_cuda()
# 首帧手势对齐输入图片,keypoint数据左眼,肩膀及手肘,
_, first_key, first_box_xy = visualizer(np.asarray(input_frames_cv2[0]),None)
if not first_box_xy : # first frame maybe empty or no preson,skip it,try find sceond
logging.info("*********first frame don't has person,skip it**********")
for i in range(len(input_frames_cv2)):
_, first_key, first_box_xy = visualizer(np.asarray(input_frames_cv2[i+1]), None)
if first_box_xy:
break
_, input_key, input_box_xy = visualizer(np.asarray(panding_img),None)
first_length,first_left_eye_y=estimate_ratio(first_key,first_box_xy)
input_length,input_left_eye_y = estimate_ratio(input_key,input_box_xy)
#print(first_length,first_left_eye_y,input_length,input_left_eye_y) #160.0 [236.0] 158.0 [151.0] 眼睛高度为绝对值
if first_length and first_left_eye_y and input_length and input_left_eye_y:
if abs(input_length / height - first_length / height) > 0.005: # 比例不同须基于输入图片对齐
logging.info(
"Starting the first frame gesture alignment based on the input image *** 基于输入图片,开始首帧手势缩放对齐 !")
input_left_eye_y_=input_left_eye_y[0]
first_left_eye_y_=first_left_eye_y[0]
input_frames_cv2=[align_img(input_length, first_length, height, width, i, input_left_eye_y_,
first_left_eye_y_) for i in input_frames_cv2]
else:# 人体比例接近,但是高度不对,也需要对齐
logging.info(
"Starting the first frame shift based on the input image *** 基于输入图片,开始首帧手势平移对齐 !")
if abs(input_left_eye_y[0] / height - first_left_eye_y[
0] / height) > 0.005:
input_frames_cv2 = [affine_img(input_left_eye_y, first_left_eye_y, i) for i in input_frames_cv2]
# xxx=input_frames_cv2
# for i,xx in enumerate(xxx):
# cv2.imwrite(f"{i}.png",xx)
# if i >2:
# break
empty_index=[]
for i,img in enumerate(input_frames_cv2):
pose_img,_,BOX_=visualizer(np.asarray(img),[5])
if not BOX_:
pose_img=np.zeros((width, height, 3), np.uint8) #防止空帧报错
empty_index.append(i) # 记录空帧索引
np.save(os.path.join(pose_dir, f"{i}"), pose_img)
#cv2.imwrite(f"{i}.png", pose_img)
if empty_index:
print(f"********* The index of frames list : {empty_index} , which is no person find in images *********")
if len(empty_index) == 1:
if empty_index[0] != 0:
shutil.copy2(os.path.join(pose_dir, f"{empty_index[0]}.npy"), os.path.join(pose_dir, f"{empty_index[0]-1}.npy")) # 抽前帧覆盖
else:
shutil.copy2(os.path.join(pose_dir, f"{empty_index[0]}.npy"),
os.path.join(pose_dir, f"{empty_index[0] + 1}.npy")) # 抽前帧覆盖
else:
if 0 not in empty_index:
for i in empty_index:
shutil.copy2(os.path.join(pose_dir, f"{i}.npy"),
os.path.join(pose_dir, f"{empty_index[i] - 1}.npy")) # 抽前帧覆盖
else:
for i,x in enumerate(empty_index): #先抽连续帧最末尾的后一帧盖0帧
if empty_index[i] != x: # [0,1,x]
shutil.copy2(os.path.join(pose_dir, f"{0}.npy"),
os.path.join(pose_dir, f"{i}.npy"))
break
else:
pass
for i,x in enumerate(empty_index): #其他帧抽前帧覆盖
if i!=0:
shutil.copy2(os.path.join(pose_dir, f"{x}.npy"),
os.path.join(pose_dir, f"{empty_index[i] - 1}.npy")) # 抽前帧覆盖
USE_Default = False
visualizer.enable_model_cpu_offload()
gc.collect()
torch.cuda.empty_cache()
else:
if pose_dir == "none":
logging.info("when use echo v2,need choice a pose dir,using default pose for testing !")
pose_dir = os.path.join(cur_path, "echomimic_v2/assets/halfbody_demo/pose/01")
USE_Default = True
else:
logging.info(
"Use NPY files for custom videos, which must be located in directory comfyui/input/tensorrt_lite")
pose_dir = os.path.join(tensorrt_lite, pose_dir)
USE_Default = False
if seed is not None and seed > -1:
generator = torch.manual_seed(seed)
else:
generator = torch.manual_seed(random.randint(100, 1000000))
#final_fps = fps
start_idx = 0
audio_clip = AudioFileClip(uploaded_audio)
L = min(int(audio_clip.duration * fps),length,len(os.listdir(pose_dir))) # if above will cause error
#L=min(length,L) #length is definitely
print(f"***** infer length is {L}")
pose_list = []
for index in range(start_idx, start_idx + L):
tgt_musk_path = os.path.join(pose_dir, "{}.npy".format(index))
if USE_Default:
detected_pose = np.load(tgt_musk_path, allow_pickle=True).tolist()
imh_new, imw_new, rb, re, cb, ce = detected_pose['draw_pose_params'] #print(imh_new, imw_new, rb, re, cb, ce) 官方示例蒙版的尺寸是768*768
im = draw_pose_select_v2(detected_pose, imh_new, imw_new, ref_w=800) #缩放比例为1,im也是768 ref_w!=768
im = np.transpose(np.array(im), (1, 2, 0))
tgt_musk = np.zeros((imw_new, imh_new, 3)).astype('uint8')
tgt_musk[rb:re, cb:ce, :] = im
else:
tgt_musk = np.load(tgt_musk_path, allow_pickle=True)
tgt_musk = center_resize_pad(tgt_musk, width, height) # 缩放裁剪遮罩,防止遮罩非正方形
tgt_musk_pil = Image.fromarray(np.array(tgt_musk)).convert('RGB')
pose_list.append(
torch.Tensor(np.array(tgt_musk_pil)).to(dtype=weight_dtype, device=device).permute(2, 0, 1) / 255.0)
poses_tensor = torch.stack(pose_list, dim=1).unsqueeze(0)
print(f"poses_tensor:{poses_tensor.shape}")
# audio_clip = AudioFileClip(audio_clip)
#
# audio_clip = audio_clip.set_duration(L / fps)
video = pipe(
infer_image_pil,
uploaded_audio,
poses_tensor[:, :, :L, ...],
width,
height,
L,
steps,
cfg,
generator=generator,
audio_sample_rate=sample_rate,
context_frames=context_frames,
fps=fps,
context_overlap=context_overlap,
start_idx=start_idx,
).videos
final_length = min(video.shape[2],poses_tensor.shape[2], L)
video_sig = video[:, :, :final_length, :, :]
output_file = os.path.join(folder_paths.output_directory, f"{audio_file_prefix}_echo.mp4")
print(f"**** final_length is : {final_length} ****")
if origin_h!=origin_w:
ouput_list = save_videos_grid(video_sig, output_file, n_rows=1, fps=fps, save_video=save_video,size=(origin_w,origin_h),ref_image_pil=ref_image_pil)
else:
ouput_list = save_videos_grid(video_sig, output_file, n_rows=1, fps=fps, save_video=save_video)
if save_video:
output_video_path = os.path.join(folder_paths.output_directory, f"{audio_file_prefix}_audio.mp4")
video_clip = VideoFileClip(output_file)
audio_clip = AudioFileClip(uploaded_audio)
final_clip = video_clip.set_audio(audio_clip)
final_clip.write_videofile(
output_video_path,
codec="libx264", audio_codec="aac")
print(f"**** saving{output_file} at {output_video_path} ****")
video_clip.reader.close()
audio_clip.close()
final_clip.reader.close()
return ouput_list
def process_video(face_img, uploaded_audio, width, height, length, seed, facemask_dilation_ratio,
facecrop_dilation_ratio, context_frames, context_overlap, cfg, steps, sample_rate, fps, pipe,
face_detector, save_video, pose_dir, video_images, audio_file_prefix,
visualizer=None,):
if seed is not None and seed > -1:
generator = torch.manual_seed(seed)
else:
generator = torch.manual_seed(random.randint(100, 1000000))
#### face musk prepare
face_mask = np.zeros((face_img.shape[0], face_img.shape[1])).astype('uint8')
det_bboxes, probs = face_detector.detect(face_img)
select_bbox = select_face(det_bboxes, probs)
if select_bbox is None:
face_mask[:, :] = 255
else:
xyxy = select_bbox[:4].astype(float) # 面部处理出来是浮点数,无法实现整形
xyxy = np.round(xyxy).astype("int")
rb, re, cb, ce = xyxy[1], xyxy[3], xyxy[0], xyxy[2] #56 227 132 268
r_pad = int((re - rb) * facemask_dilation_ratio) # ratio:0.1 遮罩膨胀系数 17*2
c_pad = int((ce - cb) * facemask_dilation_ratio) # ratio:0.1 遮罩膨胀系数 14*2
face_mask[rb - r_pad: re + r_pad, cb - c_pad: ce + c_pad] = 255
#### face crop ####
if facecrop_dilation_ratio<1.0:
if facecrop_dilation_ratio==0:
facecrop_dilation_ratio=1
r_pad_crop = int((re - rb) * facecrop_dilation_ratio) # ratio 0.5 r_pad_crop:85,c_pad_crop:68
c_pad_crop = int((ce - cb) * facecrop_dilation_ratio) # ratio 1.0 r_pad_crop:171,c_pad_crop:136
crop_rect = [max(0, cb - c_pad_crop), max(0, rb - r_pad_crop), min(ce + c_pad_crop, face_img.shape[1]),
min(re + r_pad_crop, face_img.shape[0])]
if width == height:
# 输出图片指定尺寸,如果是非方形,则会变形
face_img_i, ori_face_rect_i = crop_and_pad(face_img, crop_rect)
face_mask_m, ori_mask_rect_m = crop_and_pad(face_mask, crop_rect) # (0, 7, 384, 391)
face_img = cv2.resize(face_img_i, (width, height))
face_mask = cv2.resize(face_mask_m, (width, height))
else:
face_img,face_mask=crop_and_pad_rectangle(face_img,face_mask,crop_rect)
face_img= cv2tensor(face_img).permute(0, 2, 3, 1)#[1, 3, 357, 245] =>[[1,357, 245,3]]
face_mask = cv2tensor(face_mask).permute(0, 2, 3, 1)
face_img=tensor_upscale(face_img, width, height)
face_img=tensor2cv(face_img)
face_mask = tensor_upscale(face_mask, width, height)
face_mask=cv2.cvtColor(tensor2cv(face_mask), cv2.COLOR_BGR2GRAY)#二值化
ret, face_mask = cv2.threshold(face_mask, 0, 255, cv2.THRESH_BINARY)
else: #when ratio=1 no crop
print("when facecrop_ratio=1.0,The maximum image size will be obtained, but there may be edge deformation.** 选择最大裁切为1.0时,边缘可能会出现形变!")
ref_image_pil = Image.fromarray(face_img[:, :, [2, 1, 0]])
if visualizer:
if pose_dir == "none": # motion sync
if isinstance(video_images,torch.Tensor):
print("**** Use video pose drive video! ****")
pose_dir_path,video_len = motion_sync_main(visualizer, width, height, video_images, face_img,facecrop_dilation_ratio,
audio_file_prefix)
else:
raise ("**** You need link video_images for drive video ****")
#pose_dir = os.path.join(cur_path, "assets", "test_pose_demo_pose") # default
else:
print("**** Use pkl drive video! ****")
pose_dir_path = os.path.join(tensorrt_lite, pose_dir)
files_and_directories = os.listdir(pose_dir_path)
# 过滤出文件,排除子目录
files = [f for f in files_and_directories if os.path.isfile(os.path.join(pose_dir_path, f))]
video_len=len(files)
if length>video_len:
print(f"**** video length {video_len} is less than length,use {video_len} as {length} ****")
length=video_len
pose_list = []
for index in range(len(os.listdir(pose_dir_path))):
tgt_musk_path = os.path.join(pose_dir_path, f"{index}.pkl")
with open(tgt_musk_path, "rb") as f:
tgt_kpts = pickle.load(f)
tgt_musk = visualizer.draw_landmarks((width, height), tgt_kpts,facecrop_dilation_ratio)
tgt_musk_pil = Image.fromarray(np.array(tgt_musk).astype(np.uint8)).convert('RGB')
pose_list.append(
torch.Tensor(np.array(tgt_musk_pil)).to(dtype=weight_dtype, device="cuda").permute(2, 0, 1) / 255.0)
face_mask_tensor = torch.stack(pose_list, dim=1).unsqueeze(0)
else:
print("**** Use audio drive video! ****")
face_mask_tensor = torch.Tensor(face_mask).to(dtype=weight_dtype, device="cuda").unsqueeze(0).unsqueeze(
0).unsqueeze(0) / 255.0
video = pipe(
ref_image_pil,
uploaded_audio,
face_mask_tensor,
width,
height,
length,
steps,
cfg,
generator=generator,
audio_sample_rate=sample_rate,
context_frames=context_frames,
fps=fps,
context_overlap=context_overlap
).videos
final_length = min(video.shape[2], face_mask_tensor.shape[2], length)
output_file = os.path.join(folder_paths.output_directory, f"{audio_file_prefix}_echo.mp4")
print(f"**** final_length is : {final_length} ****")
ouput_list = save_videos_grid(video, output_file, n_rows=1, fps=fps, save_video=save_video)
if save_video:
output_video_path = os.path.join(folder_paths.output_directory, f"{audio_file_prefix}_audio.mp4")
video_clip = VideoFileClip(output_file)
audio_clip = AudioFileClip(uploaded_audio)
final_clip = video_clip.set_audio(audio_clip)
final_clip.write_videofile(
output_video_path,
codec="libx264", audio_codec="aac")
print(f"**** saving{output_file} at {output_video_path} ****")
video_clip.reader.close()
audio_clip.close()
final_clip.reader.close()
return ouput_list
def motion_sync_main(vis, width, height, video_images, face_img,facecrop_dilation_ratio, audio_file_prefix):
lmk_extractor = LMKExtractor()
ref_det = lmk_extractor(face_img)
#driver_video = os.path.join(folder_paths.input_directory, driver_video)
# if audio_form_video:
# audio_path = os.path.join(folder_paths.input_directory, f"{audio_file_prefix}_audio.wav")
# video_clip = VideoFileClip(driver_video)
# audio_clip = video_clip.audio
# audio_clip.write_audiofile(audio_path)
# video_clip.close()
# audio_clip.close()
video_len,_,_,_=video_images.size()
if video_len<25:
raise "input video has not much frames for driver,change your input video!"
else:
tensor_list = list(torch.chunk(video_images, chunks=video_len))
input_frames_cv2=[tensor2cv(tensor_upscale(i, width, height)) for i in tensor_list]
# print(ref_det)
sequence_driver_det = []
if input_frames_cv2:
try:
print("**** Starting process video ****")
for frame in input_frames_cv2:
result = lmk_extractor(frame)
assert result is not None, "bad video, face not detected"
sequence_driver_det.append(result)
except:
print("face detection failed")
else:
raise "input video error,change your input video!"
print("**** motion sync lenght " f"{len(sequence_driver_det)} ****")
if vis:
if facecrop_dilation_ratio==0:
facecrop_dilation_ratio=1
pose_frames_driver = [vis.draw_landmarks((width, height), i["lmks"],facecrop_dilation_ratio, normed=True) for i in sequence_driver_det]
poses_add_driver = [(i * 0.5 + j * 0.5).clip(0, 255).astype(np.uint8) for i, j in
zip(input_frames_cv2, pose_frames_driver)]
#print(f"**** poses_add_driver is done in len : {len(poses_add_driver)} ****")
save_dir = os.path.join(tensorrt_lite, audio_file_prefix)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
sequence_det_ms = motion_sync(sequence_driver_det, ref_det)
for i in range(len(sequence_det_ms)):
with open('{}/{}.pkl'.format(save_dir, i), 'wb') as file:
pickle.dump(sequence_det_ms[i], file)
print(f"**** motion_sync {save_dir} is done ****")
else: #即便有文件夹,还是重新生成,避免出错
timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
save_dir=os.path.join(tensorrt_lite,f"{audio_file_prefix}_{timestamp}")
os.makedirs(save_dir)
sequence_det_ms = motion_sync(sequence_driver_det, ref_det)
for i in range(len(sequence_det_ms)):
with open('{}/{}.pkl'.format(save_dir, i), 'wb') as file:
pickle.dump(sequence_det_ms[i], file)
print(f"**** motion_sync {save_dir} is done ****")
return save_dir,video_len
def select_face(det_bboxes, probs):
## max face from faces that the prob is above 0.8
## box: xyxy
if det_bboxes is None or probs is None:
return None
filtered_bboxes = []
for bbox_i in range(len(det_bboxes)):
if probs[bbox_i] > 0.8:
filtered_bboxes.append(det_bboxes[bbox_i])
if len(filtered_bboxes) == 0:
return None
sorted_bboxes = sorted(filtered_bboxes, key=lambda x: (x[3] - x[1]) * (x[2] - x[0]), reverse=True)
return sorted_bboxes[0]
def find_directories(base_path):
directories = []
for root, dirs, files in os.walk(base_path):
for name in dirs:
directories.append(name)
return directories
def download_weights(file_dir,repo_id,subfolder="",pt_name=""):
if subfolder:
file_path = os.path.join(file_dir,subfolder, pt_name)
sub_dir=os.path.join(file_dir,subfolder)
if not os.path.exists(sub_dir):
os.makedirs(sub_dir)
if not os.path.exists(file_path):
pt_path = hf_hub_download(
repo_id=repo_id,
subfolder=subfolder,
filename=pt_name,
local_dir = file_dir,
)
else:
pt_path=get_instance_path(file_path)
return pt_path
else:
file_path = os.path.join(file_dir, pt_name)
if not os.path.exists(file_dir):
os.makedirs(file_dir)
if not os.path.exists(file_path):
pt_path = hf_hub_download(
repo_id=repo_id,
filename=pt_name,
local_dir=file_dir,
)
else:
pt_path=get_instance_path(file_path)
return pt_path
def pil2narry(img):
img = torch.from_numpy(np.array(img).astype(np.float32) / 255.0).unsqueeze(0)
return img
def narry_list(list_in):
for i in range(len(list_in)):
value = list_in[i]
modified_value = pil2narry(value)
list_in[i] = modified_value
return list_in
def get_video_img(tensor):
if tensor == None:
return None
outputs = []
for x in tensor:
x = tensor_to_pil(x)
outputs.append(x)
yield outputs
def instance_path(path, repo):
if repo == "":
if path == "none":
repo = "none"
else:
model_path = get_local_path(folder_paths.base_path, path)
repo = get_instance_path(model_path)
return repo
def gen_img_form_video(tensor):
pil = []
for x in tensor:
pil[x] = tensor_to_pil(x)
yield pil
def phi_list(list_in):
for i in range(len(list_in)):
value = list_in[i]
list_in[i] = value
return list_in
def tensor_to_pil(tensor):
image_np = tensor.squeeze().mul(255).clamp(0, 255).byte().numpy()
image = Image.fromarray(image_np, mode='RGB')
return image
def nomarl_upscale(img_tensor, width, height):
samples = img_tensor.movedim(-1, 1)
img = common_upscale(samples, width, height, "nearest-exact", "center")
samples = img.movedim(1, -1)
img_pil = tensor_to_pil(samples)
return img_pil
def tensor_upscale(img_tensor, width, height):
samples = img_tensor.movedim(-1, 1)
img = common_upscale(samples, width, height, "nearest-exact", "center")
samples = img.movedim(1, -1)
return samples
def get_local_path(comfy_file_path, model_path):
path = os.path.join(comfy_file_path, "models", "diffusers", model_path)
model_path = os.path.normpath(path)
if sys.platform == 'win32':
model_path = model_path.replace('\\', "/")
return model_path
def get_instance_path(path):
instance_path = os.path.normpath(path)
if sys.platform == 'win32':
instance_path = instance_path.replace('\\', "/")
return instance_path
def tensor2cv(tensor_image):
if len(tensor_image.shape)==4:# b hwc to hwc
tensor_image=tensor_image.squeeze(0)
if tensor_image.is_cuda:
tensor_image = tensor_image.cpu()
tensor_image=tensor_image.numpy()
#反归一化
maxValue=tensor_image.max()
tensor_image=tensor_image*255/maxValue
img_cv2=np.uint8(tensor_image)#32 to uint8
img_cv2=cv2.cvtColor(img_cv2,cv2.COLOR_RGB2BGR)
return img_cv2
def cvargb2tensor(img):
assert type(img) == np.ndarray, 'the img type is {}, but ndarry expected'.format(type(img))
img = torch.from_numpy(img.transpose((2, 0, 1)))
return img.float().div(255).unsqueeze(0) # 255也可以改为256
def cv2tensor(img):
assert type(img) == np.ndarray, 'the img type is {}, but ndarry expected'.format(type(img))
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = torch.from_numpy(img.transpose((2, 0, 1)))
return img.float().div(255).unsqueeze(0) # 255也可以改为256
def images_generator(img_list: list,):
#get img size
sizes = {}
for image_ in img_list:
if isinstance(image_,Image.Image):
count = sizes.get(image_.size, 0)
sizes[image_.size] = count + 1
elif isinstance(image_,np.ndarray):
count = sizes.get(image_.shape[:2][::-1], 0)
sizes[image_.shape[:2][::-1]] = count + 1
else:
raise "unsupport image list,must be pil or cv2!!!"
size = max(sizes.items(), key=lambda x: x[1])[0]
yield size[0], size[1]
# any to tensor
def load_image(img_in):
if isinstance(img_in, Image.Image):
img_in=img_in.convert("RGB")
i = np.array(img_in, dtype=np.float32)
i = torch.from_numpy(i).div_(255)
if i.shape[0] != size[1] or i.shape[1] != size[0]:
i = torch.from_numpy(i).movedim(-1, 0).unsqueeze(0)
i = common_upscale(i, size[0], size[1], "lanczos", "center")
i = i.squeeze(0).movedim(0, -1).numpy()
return i
elif isinstance(img_in,np.ndarray):
i=cv2.cvtColor(img_in,cv2.COLOR_BGR2RGB).astype(np.float32)
i = torch.from_numpy(i).div_(255)
#print(i.shape)
return i
else:
raise "unsupport image list,must be pil,cv2 or tensor!!!"
total_images = len(img_list)
processed_images = 0
pbar = ProgressBar(total_images)
images = map(load_image, img_list)
try:
prev_image = next(images)
while True:
next_image = next(images)
yield prev_image
processed_images += 1
pbar.update_absolute(processed_images, total_images)
prev_image = next_image
except StopIteration:
pass
if prev_image is not None:
yield prev_image
def load_images(img_list: list,):
gen = images_generator(img_list)
(width, height) = next(gen)
images = torch.from_numpy(np.fromiter(gen, np.dtype((np.float32, (height, width, 3)))))
if len(images) == 0:
raise FileNotFoundError(f"No images could be loaded .")
return images
def tensor2pil(tensor):
image_np = tensor.squeeze().mul(255).clamp(0, 255).byte().numpy()
image = Image.fromarray(image_np, mode='RGB')
return image
def cf_tensor2cv(tensor,width, height):
d1, _, _, _ = tensor.size()
if d1 > 1:
tensor_list = list(torch.chunk(tensor, chunks=d1))
tensor = [tensor_list][0]
cr_tensor=tensor_upscale(tensor,width, height)
cv_img=tensor2cv(cr_tensor)
return cv_img
def center_resize_pad(img, new_width, new_height):#为简化,new已是正方形
h, w = img.shape[:2]
if w == h:
if w == new_width:
return img
else:
return cv2.resize(img, (new_width, new_height))
else: #蒙版也有可能不是正方形
if h > w: # 竖直图左右填充
s = max(h, w)
f = np.zeros((s, s, 3), np.uint8)
ax, ay = (s - img.shape[1]) // 2, (s - img.shape[0]) // 2
f[ay:img.shape[0] + ay, ax:ax + img.shape[1]] = img
else:
f = center_crop(img, h, h)
return cv2.resize(f, (new_width, new_height))
def img_padding(height,width,ref_image_pil):
output_max = max(height, width)
img = tensor2cv(ref_image_pil)
h, w = img.shape[:2]
if h==w:
return cv2.resize(img, (output_max,output_max), interpolation=cv2.INTER_AREA)
else:
if h > w: #竖直图左右填充
s = max(h, w)
f = np.zeros((s, s, 3), np.uint8)
ax, ay = (s - w) // 2, (s - h) // 2
f[ay:h + ay, ax:ax + w] = img
else:
f=center_crop(img, h, h)
return cv2.resize(f, (output_max,output_max), interpolation=cv2.INTER_AREA)
def estimate_ratio(keypoint: list,box_xy,length=None):
left_eye_y = []
left_shoulder_y = []
left_elbow_y = []
for i, (name, (x, y, conf)) in enumerate(keypoint[0].items()):
if name == "left_eye":
if conf > 0.3:
left_eye_y.append(y)
if name == "left_shoulder":
if conf > 0.3:
left_shoulder_y.append(y)
if name == "left_elbow":
if conf > 0.3:
left_elbow_y.append(y)
if left_eye_y and left_elbow_y:
length=left_elbow_y[0] - left_eye_y[0]
elif left_eye_y and left_shoulder_y and not left_elbow_y :
length = left_shoulder_y[0] - left_eye_y[0]
else:
pass
if left_eye_y:
left_eye_y=[left_eye_y[0]+box_xy[0]] #眼部的实际高度要加上box的边界
return length,left_eye_y
def align_img(input_length, first_length, height, width, input_frames_cv2_first, input_left_eye_y, first_left_eye_y):
ratio = input_length / first_length # 82.0 [50.0] 76.0 [41.0] f f in in
base_image=np.zeros((height, width,3), np.uint8)
if input_length / height < first_length / height: # 输入图的人物占比要小,pose图需要缩小对齐,0.926 ratio
input_frames_cv2_first=cv2.resize(input_frames_cv2_first, (int(height * ratio), int(height * ratio)),
interpolation=cv2.INTER_AREA) #缩小
reduced_image,pad_size=center_paste(base_image, input_frames_cv2_first) #中心粘贴
move_ = -int(first_left_eye_y * ratio+pad_size[0] - input_left_eye_y) if first_left_eye_y * ratio +pad_size[0] >= \
input_left_eye_y else \
int(input_left_eye_y)- int(first_left_eye_y * ratio+pad_size[0]) #对齐眼睛
translation_matrix = np.float32([[1, 0, 0], [0, 1, move_]]) #y轴位移
shifted_image = cv2.warpAffine(reduced_image, translation_matrix, (width, height))
else: # pose图里人物的比例小于输入图,pose要放大
input_frames_cv2_first=cv2.resize(input_frames_cv2_first, (int(height / ratio), int(height / ratio)),
interpolation=cv2.INTER_AREA) #放大
crpo_image=center_crop(input_frames_cv2_first, height, width) #中心裁切
h, w = input_frames_cv2_first.shape[:2]
shift_y=(h-height)//2
move_ = -int(first_left_eye_y / ratio-shift_y - input_left_eye_y) if first_left_eye_y / ratio-shift_y >= \
input_left_eye_y else \
int(input_left_eye_y) - int(first_left_eye_y / ratio-shift_y)
translation_matrix = np.float32([[1, 0, 0], [0, 1, move_]])
shifted_image = cv2.warpAffine(crpo_image, translation_matrix, (width, height))
return shifted_image
def center_paste(img_b,img_f):
b_h,b_w=img_b.shape[:2]
f_h, f_w = img_f.shape[:2]
x = (b_w - f_w) // 2
y = (b_h - f_h) // 2
# 确保坐标不会是负数
x = max(0, x)
y = max(0, y)
img_b[y:y + f_h, x:x + f_w] = img_f
return img_b,(x,y)
def affine_img(input_left_eye_y, first_left_eye_y, img):
height,width=img.shape[:2]
move_ = int(input_left_eye_y[0] - first_left_eye_y[0])
translation_matrix = np.float32([[1, 0, 0], [0, 1, move_]]) # y轴位移
shifted_image = cv2.warpAffine(img, translation_matrix, (width, height))
return shifted_image