forked from wbhu/DnCNN-tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
100 lines (83 loc) · 2.94 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import gc
import os
import sys
import numpy as np
import tensorflow as tf
from PIL import Image
def data_augmentation(image, mode):
if mode == 0:
# original
return image
elif mode == 1:
# flip up and down
return np.flipud(image)
elif mode == 2:
# rotate counterwise 90 degree
return np.rot90(image)
elif mode == 3:
# rotate 90 degree and flip up and down
image = np.rot90(image)
return np.flipud(image)
elif mode == 4:
# rotate 180 degree
return np.rot90(image, k=2)
elif mode == 5:
# rotate 180 degree and flip
image = np.rot90(image, k=2)
return np.flipud(image)
elif mode == 6:
# rotate 270 degree
return np.rot90(image, k=3)
elif mode == 7:
# rotate 270 degree and flip
image = np.rot90(image, k=3)
return np.flipud(image)
class train_data():
def __init__(self, filepath='./data/image_clean_pat.npy'):
self.filepath = filepath
assert '.npy' in filepath
if not os.path.exists(filepath):
print("[!] Data file not exists")
sys.exit(1)
def __enter__(self):
print("[*] Loading data...")
self.data = np.load(self.filepath)
np.random.shuffle(self.data)
print("[*] Load successfully...")
return self.data
def __exit__(self, type, value, trace):
del self.data
gc.collect()
print("In __exit__()")
def load_data(filepath='./data/image_clean_pat.npy'):
return train_data(filepath=filepath)
def load_images(filelist):
# pixel value range 0-255
if not isinstance(filelist, list):
im = Image.open(filelist).convert('L')
return np.array(im).reshape(1, im.size[1], im.size[0], 1)
data = []
for file in filelist:
im = Image.open(file).convert('L')
data.append(np.array(im).reshape(1, im.size[1], im.size[0], 1))
return data
def save_images(filepath, ground_truth, noisy_image=None, clean_image=None):
# assert the pixel value range is 0-255
ground_truth = np.squeeze(ground_truth)
noisy_image = np.squeeze(noisy_image)
clean_image = np.squeeze(clean_image)
if not clean_image.any():
cat_image = ground_truth
else:
cat_image = np.concatenate([ground_truth, noisy_image, clean_image], axis=1)
im = Image.fromarray(cat_image.astype('uint8')).convert('L')
im.save(filepath, 'png')
def cal_psnr(im1, im2):
# assert pixel value range is 0-255 and type is uint8
mse = ((im1.astype(np.float) - im2.astype(np.float)) ** 2).mean()
psnr = 10 * np.log10(255 ** 2 / mse)
return psnr
def tf_psnr(im1, im2):
# assert pixel value range is 0-1
mse = tf.losses.mean_squared_error(labels=im2 * 255.0, predictions=im1 * 255.0)
return 10.0 * (tf.log(255.0 ** 2 / mse) / tf.log(10.0))