-
Notifications
You must be signed in to change notification settings - Fork 130
/
Copy pathopt.py
182 lines (164 loc) · 10.4 KB
/
opt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
def config_parser():
import configargparse
parser = configargparse.ArgumentParser()
# -- Common options
parser.add_argument('--config', is_config_file=True,
help='config file path')
parser.add_argument("--expname", type=str,
help='experiment name')
parser.add_argument("--basedir", type=str, default='./logs/',
help='where to store ckpts and logs')
parser.add_argument("--datadir", type=str, default='./data/llff/fern',
help='input data directory'),
parser.add_argument("--num_epochs", type=int, default=200,
help='train how many epoches'),
parser.add_argument("--num_gpus", type=int, default=1,
help='use how many gpus')
parser.add_argument("--white_bkgd", action='store_true',
help='set to render synthetic data on a white bkgd (always use for dvoxels)')
parser.add_argument("--debug_green_bkgd", action='store_true',
help='set to render synthetic data on a green bkgd (need to set white bkgd true first)')
# -- Network options
parser.add_argument("--model", type=str, choices=['NeROIC'], default='NeROIC',
help='name of the model')
parser.add_argument("--model_type", type=str, choices=["geometry", "rendering"], required=True,
help='Stage(Type) of the model')
parser.add_argument("--netdepth", type=int, default=8,
help='layers in network')
parser.add_argument("--netwidth", type=int, default=256,
help='channels per layer')
parser.add_argument("--netdepth_fine", type=int, default=8,
help='layers in fine network')
parser.add_argument("--netwidth_fine", type=int, default=256,
help='channels per layer in fine network')
parser.add_argument("--use_viewdirs", action='store_true',
help='use full 5D input instead of 3D')
parser.add_argument("--i_embed", type=int, default=0,
help='set 0 for default positional encoding, -1 for none')
parser.add_argument("--multires", type=int, default=10,
help='log2 of max freq for positional encoding (3D location)')
parser.add_argument("--multires_views", type=int, default=4,
help='log2 of max freq for positional encoding (2D direction)')
# -- Rendering options
parser.add_argument("--N_samples", type=int, default=64,
help='number of coarse samples per ray')
parser.add_argument("--N_importance", type=int, default=0,
help='number of additional fine samples per ray')
parser.add_argument("--perturb", type=float, default=1.,
help='set to 0. for no jitter, 1. for jitter')
parser.add_argument("--raw_noise_std", type=float, default=0.,
help='std dev of noise added to regularize sigma_a output, 1e0 recommended')
# -- NeRF-W options
parser.add_argument("--encode_appearance", action='store_true',
help='train nerf-w with appearance encoding')
parser.add_argument("--encode_transient", action='store_true',
help='train nerf-w with transient encoding')
parser.add_argument('--N_vocab', type=int, default=1000,
help='''number of vocabulary (number of images)
in the dataset for nn.Embedding''')
parser.add_argument('--N_a', type=int, default=48,
help='number of embeddings for appearance')
parser.add_argument('--N_tau', type=int, default=16,
help='number of embeddings for transient objects')
parser.add_argument('--beta_min', type=float, default=0.1,
help='minimum color variance for each ray')
# -- Geometry network options
parser.add_argument('--optimize_camera', action='store_true',
help='optimize camera at the same time')
# -- Normal extraction layer options
parser.add_argument("--normal_smooth_alpha", type=float, default=1., help='smoothing parameter for normal extraction')
# -- Rendering network options
parser.add_argument("--use_expected_depth", action='store_true',
help='if specified, use expected depth instead of all sample points for sh model')
parser.add_argument("--min_glossiness", type=float, default=1., help='minimum glossiness of BRDF')
parser.add_argument("--use_specular", action='store_true',
help='use specular shading in rendering')
parser.add_argument('--transient_lerp_mode', action='store_true',
help='use lerp to blend transient rgb and static rgb')
# -- Training options
parser.add_argument("--N_rand", type=int, default=32*32*4,
help='batch size (number of random rays per gradient step)')
parser.add_argument("--lrate", type=float, default=5e-4,
help='learning rate')
parser.add_argument("--scheduler", type=str, choices=["cosine", "multistep"], default="cosine", help='type of scheduler')
parser.add_argument("--decay_epoch", type=int, nargs="+", default=10,
help='epochs that needed for decaying')
parser.add_argument("--decay_gamma", type=float, default=0.1,
help='gamma value of lr decaying')
parser.add_argument("--chunk", type=int, default=1024*32,
help='number of rays processed in parallel, decrease if running out of memory')
parser.add_argument("--netchunk", type=int, default=1024*32,
help='number of pts sent through network in parallel, decrease if running out of memory')
parser.add_argument("--ft_path", type=str, default=None,
help='specific weights npy file to reload for coarse network')
parser.add_argument("--load_prior", action='store_true',
help='is specified, load model from ft_path as a prior, then train from scratch')
# -- Testing options
parser.add_argument('--test_img_id', type=int, default=0,
help='the id (of transient and lighting) used for testing image')
parser.add_argument('--test_split', type=str, choices=["val", "testtrain"], default="testtrain",
help='which split of poses is tested')
parser.add_argument('--test_optimize_steps', type=int, default=0,
help='Steps for lighting/camera optimization during testing')
parser.add_argument("--test_env_filename", type=str, default='',
help='path of the testing environment map'),
parser.add_argument("--test_env_maxthres", type=float, default=20,
help='maximum radiance of the env map'),
# -- Loss options
## common
parser.add_argument("--lambda_sil", type=float,
default=0, help='weight of silhouette loss')
parser.add_argument('--lambda_tr', type=float, default=0.01,
help='weight of transient regularity loss')
## geometry
parser.add_argument('--lambda_cam', type=float, default=0.01,
help='weight of camera loss')
## rendering
parser.add_argument("--lambda_n", type=float,
default=0, help='weight of normal loss')
parser.add_argument("--lambda_smooth_n", type=float,
default=0.5, help='weight of normal smoothiness loss')
parser.add_argument("--lambda_spec", type=float,
default=0, help='weight of specular regularity loss')
parser.add_argument("--lambda_light", type=float,
default=5, help='weight of light positive regularizaion loss')
# -- Dataset options
parser.add_argument("--dataset_type", type=str, choices=['llff', 'nerd_real'], default='llff',
help='options: llff, nerd_real')
parser.add_argument("--test_intv", type=int, default=8,
help='will take every 1/N images as test set.')
parser.add_argument("--test_offset", type=int, default=1,
help='index of the first test image')
parser.add_argument("--train_limit", type=int, default=-1,
help='the limitation of training images')
parser.add_argument("--multiple_far", type=float, default=1.2, help='multiple of far distance')
parser.add_argument("--have_mask", action='store_true',
help='if the dataset contains mask')
parser.add_argument("--mask_ratio", type=float, default=0,
help='ratio between foreground/background rays (fg:bg = 1:N)')
parser.add_argument("--rays_path", type=str, default="",
help='cached rays file(with normal, etc.)')
parser.add_argument("--test_resolution", type=int, default=-1,
help='resolution of the testing images. If set to -1, use the maximum resolution of training images')
# -- LLFF flags
parser.add_argument("--factor", type=int, default=8,
help='downsample factor for LLFF images')
parser.add_argument("--width", type=int, default=0,
help='downsample width for LLFF images. Dafault set to 0 (no downsampling)')
parser.add_argument("--lindisp", action='store_true',
help='sampling linearly in disparity rather than depth')
parser.add_argument("--use_bbox", action='store_true',
help='use bounding box of the point cloud from SfM')
# -- Logging/Saving options
parser.add_argument("--i_testset", type=int, default=-1,
help='frequency of testset saving. -1 means test on the end of every epoch')
parser.add_argument("--i_testepoch", type=int, default=1,
help='frequency of testset saving related to epoch')
parser.add_argument("--i_video", type=int, default=50000,
help='frequency of test video saving')
parser.add_argument("--i_traintest", type=int, default=50000,
help='frequency of testing one train poses')
parser.add_argument("--N_test_pose", type=int, default=12,
help='number of test poses')
parser.add_argument("--verbose", action='store_true', help='output additional infos')
return parser