-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
executable file
·67 lines (60 loc) · 4.26 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
layout: default
---
<div class="header-container jumbotron">
<div class="container">
<h1>Open Graph Benchmark</h1>
<p><strong>Benchmark datasets, data loaders and evaluators for graph machine learning<strong></p>
<p><a class="btn btn-primary btn-lg" href="{{ "/docs/home/" | relative_url }}" role="button">Get Started</a> <a class="btn btn-warning btn-lg" href="{{ "/docs/lsc/" | relative_url }}" role="button">OGB-LSC</a> </p>
<!-- <a class="btn btn-warning btn-lg" href="{{ "/docs/lsc/" | relative_url }}" role="button">Large-Scale Challenge</a> -->
</div>
</div>
<div class="container">
<div class="row">
<div class="col-md-6">
<p class="lead">
<font size="5">
The Open Graph Benchmark (OGB) is a collection of realistic, large-scale, and diverse benchmark datasets for machine learning on graphs.
OGB datasets are automatically downloaded, processed, and split using the <a href="{{ "/docs/home/#dataloader" | relative_url }}">OGB Data Loader</a>. The model performance can be evaluated using the <a href="{{ "/docs/home/#evaluator" | relative_url }}">OGB Evaluator</a> in a unified manner. <br/>
OGB is a community-driven initiative in active development. We expect the benchmark datasets to evolve. To keep up to date to major updates, <b>subscribe to our google group <a href="https://groups.google.com/forum/#!forum/open-graph-benchmark">here</a></b>.
</font>
</p>
</div>
<div class="col-md-6 text-center">
<img src="{{ "/assets/img/OGB.png" | relative_url }}" alt="Jekyll logo" class="img-responsive">
</div>
</div>
<hr>
<div class="row">
<div class="col-sm-4">
<h1 class="text-center"><a href="{{ "/docs/dataset_overview/" | relative_url }}"><i class="fa fa-database" aria-hidden="true"></i></a></h1>
<h3 class="text-center"><a href="{{ "/docs/dataset_overview/" | relative_url }}">Realistic datasets</a></h3>
<p class="f3-light">OGB provides a diverse set of challenging and realistic <a href="{{ "/docs/dataset_overview/" | relative_url }}">benchmark datasets</a> that are of varying sizes and cover a variety graph machine learning tasks, including prediction of <a href="{{ "/docs/nodeprop/" | relative_url }}">node, </a><a href="{{ "/docs/linkprop/" | relative_url }}"> link, </a> and <a href="{{ "/docs/graphprop/" | relative_url }}">graph</a> properties.
</p>
</div>
<div class="col-sm-4">
<h1 class="text-center"><a href="{{ "/docs/home/#dataloader" | relative_url }}"><i class="fa fa-cogs" aria-hidden="true"></i></a></h1>
<h3 class="text-center"><a href="{{ "/docs/home/#dataloader" | relative_url }}">Flexible data loaders</a></h3>
<p class="f3-light">OGB fully automates dataset processing.
The OGB data loaders automatically download and process graphs, provide graph objects that are fully compatible with <a href="https://pytorch-geometric.readthedocs.io/">Pytorch Geometric</a> and <a href="https://www.dgl.ai/">DGL</a>.
</p>
</div>
<div class="col-sm-4">
<h1 class="text-center"><a href="{{ "/docs/home/#evaluator" | relative_url }}"><i class="fa fa-bar-chart" aria-hidden="true"></i></a></h1>
<h3 class="text-center"><a href="{{ "/docs/home/#evaluator" | relative_url }}">Unified evaluation</a></h3>
<p class="f3-light">OGB provides standardized dataset splits and evaluators that allow for easy and reliable comparison of different models in a unified manner. OGB uses <a href="{{ "/docs/leader_overview/" | relative_url }}">leaderboards</a> to keep track of the state-of-the-art.
</p>
</div>
</div>
<hr>
<div class="col-md-12 text-center">
<a href="{{ site.paper_address }}">
<img src="{{ "/assets/img/paper_download.png" | relative_url }}" alt="Jekyll logo" class="img-responsive">
</a>
</div>
<p style="color:#FFFFFF">a</p>
<div class="col-md-12 text-center">
<a href="https://arxiv.org/abs/2103.09430">
<img src="{{ "/assets/img/paper_download_lsc.png" | relative_url }}" alt="Jekyll logo" class="img-responsive">
</a>
</div>