-
Notifications
You must be signed in to change notification settings - Fork 1
/
CFRfaster.py
270 lines (216 loc) · 7.51 KB
/
CFRfaster.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
from KuhnPoker import *
from treelib import Node, Tree
from CfrNode import CfrNode
from GameTree import GameTree
from matplotlib import pyplot as plt
import Utils
import math
from collections import Counter
from math import sqrt
import random
import time
import pandas as pd
from NodeEstimator import Estimator
class CFRtrainer:
def __init__(self, alpha):
self.playerOneTree = GameTree(CfrNode)
self.playerTwoTree = GameTree(CfrNode)
self.kuhn = KuhnPoker()
self.stats = Counter()
self.alpha = alpha
self.trainigXdata = []
self.trainigYdata = []
self.hists = []
self.avgStr = []
self.stratSum = 0
self.iter = 0
self.betRegrets = []
# def HasChild(self, parentId, childTag, tree):
# if(self.GetChildByTag(parentId, childTag, tree)):
# return True
#
# return False
#
# def GetChildByTag(self, parentId, childTag, tree):
# for childId in tree.children(parentId):
# childNode = tree[childId]
# if(childNode.tag == childTag):
# return childNode
#
# return None
def CFR(self, p0, p1):
curPlayer = self.kuhn.GetCurrentPlayer()
if(self.kuhn.IsTerminateState()):
return self.kuhn.GetPayoff(curPlayer)
curPlayerProb = p0 if curPlayer == Players.one else p1
opProb = p1 if curPlayer == Players.one else p0
tree = self.playerOneTree if curPlayer == Players.one else self.playerTwoTree
cfrNode = tree.GetOrCreateDataNode(self.kuhn, curPlayer)
strategy = cfrNode.GetStrategy(curPlayerProb)
# if(random.random() < 0.9):
# strategy = cfrNode.GetStrategy(curPlayerProb)
# else:
# strategy = cfrNode.GetAverageStrategy()
util = [0.0] * NUM_ACTIONS
nodeUtil = 0
infosetStr = self.kuhn.GetInfoset(curPlayer)
# if(infosetStr == '2 | pas;bet;uplayed'):
# card = self.kuhn.GetPlayerCard(Players.two)
# self.stats[card] += card * opProb
infosetBackup = self.kuhn.SaveInfoSet()
#'1 | bet;bet;uplayed'
#'1 | bet;pas;uplayed'
# g = 6
# if (('1 | bet;bet' in infosetStr) and curPlayer == Players.one):
# g = 6
for action in range(NUM_ACTIONS):
self.kuhn.MakeAction(action)
if(curPlayer == Players.one):
util[action] += -self.CFR(p0 * strategy[action], p1)
#util[action] += -self.CFR(p0 * strategy[action], p1)
else:
util[action] += -self.CFR(p0, p1 * strategy[action])
#util[action] += -self.CFR(p0, p1 * strategy[action])
#util[action] /= 2
nodeUtil += strategy[action] * util[action]
self.kuhn.RestoreInfoSet(infosetBackup)
for action in range(NUM_ACTIONS):
regret = util[action] - nodeUtil
# if(regret > 0):
# regret = regret
# else:
# regret = 0
#regret = max(0, regret)
cfrNode.regretSum[action] = cfrNode.regretSum[action] + opProb * regret
if(('1 | uplayed;uplayed;uplayed' in infosetStr) and curPlayer == Players.one):
self.trainigXdata.append(np.array(strategy))
self.trainigYdata.append(nodeUtil)
self.betRegrets.append(cfrNode.regretSum[1])
self.stratSum += strategy[1]
self.avgStr.append(self.stratSum / (len(self.avgStr) + 1))
# if(self.iter % 300 == 0):
# xa = np.array(self.trainigXdata)[:, 1]
# bins = np.linspace(0, 1, num=5)
# hist, bin_edges = np.histogram(xa, bins=bins, density=False)
# self.hists.append((hist, bin_edges))
# self.trainigXdata.clear()
# self.trainigYdata.clear()
self.iter += 1
if (strategy[0] != 1):
strategy = strategy
#0445733333
return nodeUtil
def running_mean(self, x, N):
cumsum = np.cumsum(np.insert(x, 0, 0))
return (cumsum[N:] - cumsum[:-N]) / N
def Train(self):
util = 0
cnt = 0
start_time = time.time()
# self.playerOneTree.GetOrCreateCFRNode(self.kuhn, Players.one)
# self.playerTwoTree.GetOrCreateCFRNode(self.kuhn, Players.one)
# while (self.kuhn.NewRound() != 1):
# util += self.CFR(1, 1)
# cnt += 1
# if(cnt % 10 == 0):
# print(util / cnt)
results = []
# utils = []
for i in range(1, 3000):
self.kuhn.NewRound()
curUtil = self.CFR(1, 1)
# utils.append(curUtil)
util += curUtil
if(cnt % 80 == 0):
results.append(util / i)
# plt.plot(self.avgStr)
# plt.show()
#
# res = pd.rolling_mean(self.avgStr, window = 2)
# plt.plot(res)
# plt.show()
# plt.plot(self.betRegrets)
# plt.axhline(0, color='r')
# plt.show()
# plt.ion()
# for i in range(len(self.hists)):
# hist, bins = self.hists[i]
# width = 0.7 * (bins[1] - bins[0])
# center = (bins[:-1] + bins[1:]) / 2
#
# self.betRegrets()
# plt.bar(center, hist, align='center', width=width)
# plt.pause(2)
# plt.clf()
#
# while True:
# plt.pause(0.05)
#
# estimator = Estimator()
# realX, predX = estimator.Train(self.trainigXdata, self.trainigYdata)
#
#
#
#
# plt.plot(np.array(self.trainigXdata)[:, 1][100:], self.trainigYdata[100:])
# plt.show()
#
# xa = np.array(self.trainigXdata[3000:])[:, 1]
# ya = self.trainigYdata[3000:]
#
#
#
#
# heatmap, xedges, yedges = np.histogram2d(xa, ya, bins=10)
# extent = [xedges[0], xedges[-1], yedges[0], yedges[-1]]
#
# plt.clf()
# plt.imshow(heatmap.T, extent=extent, origin='lower')
# plt.show()
#
#
#
# missCount = 50
# t = range(len(xa) - missCount)
# plt.scatter(xa[missCount:], ya[missCount:], c=t)
# plt.show()
# plt.plot(xa[missCount:], ya[missCount:])
# plt.plot(realX, predX)
# plt.show()
# print("Time: ", time.time() - start_time)
# print("Avg util:", util / i)
# plt.plot(results)
# plt.show()
def CheckNash(self):
if (self.kuhn.IsPlayerOneCloseToNash(self.playerOneTree)):
print("Player one is in Nash")
else:
print("Player one is not in Nash")
if(self.kuhn.IsPlayerTwoCloseToNash(self.playerTwoTree)):
print("Player two is in Nash")
else:
print("Player two is not in Nash")
trainer = CFRtrainer(1)
trainer.Train()
trainer.CheckNash()
print("Player one avg strategy:")
trainer.playerOneTree.PrintAvgStrategy()
print("Player one best resp strategy:")
trainer.playerOneTree.PrintBestResp()
#
# # # print("Player one regrets:")
# # # trainer.playerOneTree.PrintRegrets()
# #
# #
# print("----------------------")
# print("Player two avg strategy:")
# trainer.playerTwoTree.PrintAvgStrategy()
# print("Player two best resp strategy:")
# trainer.playerTwoTree.PrintBestResp()
# # print("Player two regrets:")
# # trainer.playerTwoTree.PrintRegrets()
#
#
# print("Max dif: " , KuhnPoker.MaxDif)
# print("done")
#