-
Notifications
You must be signed in to change notification settings - Fork 0
/
Squeezed_QI_previous_version.nb
6871 lines (6693 loc) · 316 KB
/
Squeezed_QI_previous_version.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 12.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 316288, 6863]
NotebookOptionsPosition[ 301792, 6641]
NotebookOutlinePosition[ 302315, 6660]
CellTagsIndexPosition[ 302272, 6657]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell["\<\
MIT License
Copyright (c) 2021 Gaetana Spedalieri gae.spedalieri@york.ac.uk
Permission is hereby granted, free of charge, to any person obtaining a copy \
of this software and associated documentation files (the \
\[OpenCurlyDoubleQuote]Software\[CloseCurlyDoubleQuote]), to deal in the \
Software without restriction, including without limitation the rights to use, \
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of \
the Software, and to permit persons to whom the Software is furnished to do \
so,subject to the following conditions: The above copyright notice and this \
permission notice shall be included in all copies or substantial portions of \
the Software.
THE SOFTWARE IS PROVIDED \[OpenCurlyDoubleQuote]AS \
IS\[CloseCurlyDoubleQuote], WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, \
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR \
A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR \
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, \
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR \
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.\
\>", "Text",
CellChangeTimes->{{3.839571273162124*^9, 3.8395713968319306`*^9},
3.8450550185682325`*^9},ExpressionUUID->"36718b04-584e-42ac-aec3-\
53b40f67a816"],
Cell[" Optimal displaced-squeezed probes", "Item",
CellChangeTimes->{{3.8375171387230124`*^9,
3.837517157573023*^9}},ExpressionUUID->"26819ba0-a3c5-4d93-a597-\
112a298d5edc"],
Cell[BoxData[
RowBox[{"Quit", "[", "]"}]], "Input",
CellChangeTimes->{{3.8369750367980137`*^9, 3.836975039098144*^9}},
CellLabel->"In[1]:=",ExpressionUUID->"6f8c1c38-ef3b-4d36-bc46-44fd34e1f5af"],
Cell[BoxData[
RowBox[{"(*",
RowBox[{"**",
RowBox[{
"*", " ", "check", " ", "of", " ", "the", " ", "Pfa", " ", "and", " ",
"Pmd"}]}], " ", "****)"}]], "Input",
CellChangeTimes->{{3.8370209872145443`*^9,
3.837020999231499*^9}},ExpressionUUID->"a8e8d6c4-bdec-4a4f-9232-\
8c2b771b7411"],
Cell[BoxData[
RowBox[{
RowBox[{"gauss", "[",
RowBox[{"z_", ",", "zm_", ",", "\[Sigma]_"}], "]"}], ":=",
RowBox[{
FractionBox["1",
RowBox[{" ",
RowBox[{"\[Sigma]", " ",
SqrtBox[
RowBox[{"2", " ", "\[Pi]", " "}]]}]}]],
RowBox[{"Exp", "[",
FractionBox[
RowBox[{"-",
SuperscriptBox[
RowBox[{"(",
RowBox[{"z", "-", "zm"}], ")"}], "2"]}],
RowBox[{"2", " ",
SuperscriptBox["\[Sigma]", "2"]}]], "]"}]}]}]], "Input",
CellChangeTimes->{{3.8370210038476496`*^9, 3.8370210717481823`*^9}, {
3.837021108182034*^9, 3.8370211159542603`*^9}, {3.837021884174449*^9,
3.8370218962200794`*^9}, {3.84503472986583*^9, 3.8450347305739975`*^9}},
CellLabel->"In[3]:=",ExpressionUUID->"025b1c15-87df-404e-9233-3bf63fcfba3b"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Simplify", "[",
RowBox[{
RowBox[{
SubsuperscriptBox["\[Integral]", "t",
RowBox[{"+", "\[Infinity]"}]],
RowBox[{
RowBox[{"gauss", "[",
RowBox[{"z", ",", "zm", ",", "\[Sigma]"}], "]"}],
RowBox[{"\[DifferentialD]", "z"}]}]}], ",",
RowBox[{"\[Sigma]", ">", "0"}]}], "]"}]], "Input",
CellChangeTimes->{{3.83702109043085*^9, 3.8370211285358944`*^9}, {
3.83702116428465*^9, 3.8370211648843*^9}, {3.8370212502659845`*^9,
3.837021268165243*^9}, {3.8370219175362115`*^9, 3.8370219204441214`*^9}, {
3.8370559892636495`*^9, 3.8370559901908965`*^9}, 3.837056252062849*^9, {
3.845034732998409*^9, 3.8450347333138447`*^9}},
CellLabel->"In[4]:=",ExpressionUUID->"cfd87186-d4ae-4ea9-b033-d49d7c886d7b"],
Cell[BoxData[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"1", "-",
RowBox[{"Erf", "[",
FractionBox[
RowBox[{"t", "-", "zm"}],
RowBox[{
SqrtBox["2"], " ", "\[Sigma]"}]], "]"}]}], ")"}]}]], "Output",
CellChangeTimes->{
3.837021150080965*^9, 3.8370211900069227`*^9, 3.8370212958782225`*^9,
3.837021933886241*^9, 3.8370559984084272`*^9, 3.837056266612175*^9,
3.8375171943376184`*^9, 3.8446769466714287`*^9, {3.8450347255415926`*^9,
3.84503474221616*^9}},
CellLabel->"Out[4]=",ExpressionUUID->"514667d8-8283-4ad8-b1ce-50fc94182914"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Simplify", "[",
RowBox[{
RowBox[{
SubsuperscriptBox["\[Integral]",
RowBox[{"-", "\[Infinity]"}], "t"],
RowBox[{
RowBox[{"gauss", "[",
RowBox[{"z", ",", "zm", ",", "\[Sigma]"}], "]"}],
RowBox[{"\[DifferentialD]", "z"}]}]}], ",",
RowBox[{"\[Sigma]", ">", "0"}]}], "]"}]], "Input",
CellChangeTimes->{{3.8370562908083224`*^9, 3.837056295587343*^9}, {
3.845034746811617*^9, 3.845034746927801*^9}},
CellLabel->"In[5]:=",ExpressionUUID->"e78f4f88-2b0c-4f3e-989e-3d762d40a5b3"],
Cell[BoxData[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{"Erf", "[",
FractionBox[
RowBox[{"t", "-", "zm"}],
RowBox[{
SqrtBox["2"], " ", "\[Sigma]"}]], "]"}]}], ")"}]}]], "Output",
CellChangeTimes->{3.837056305363576*^9, 3.8450347562150393`*^9},
CellLabel->"Out[5]=",ExpressionUUID->"b830c0ef-7e88-4362-a156-34c9b77d1cc7"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"Erf", "[",
RowBox[{"-", "x"}], "]"}], "+",
RowBox[{"Erf", "[", "x", "]"}]}]], "Input",
CellChangeTimes->{{3.8370576850675354`*^9, 3.8370576917537313`*^9}},
CellLabel->"In[6]:=",ExpressionUUID->"9ec0b9c9-33a6-4879-a0be-f9bf6cc9238e"],
Cell[BoxData["0"], "Output",
CellChangeTimes->{3.8370576920040765`*^9, 3.845034850988482*^9},
CellLabel->"Out[6]=",ExpressionUUID->"bc68f168-34e0-4657-96a0-cf2e28da29b3"]
}, Open ]],
Cell[BoxData[
RowBox[{"(*",
RowBox[{"*", " ", "evaluation", " ", "thermal", " ", "noise"}], " ",
"**)"}]], "Input",
CellChangeTimes->{{3.837073428834882*^9,
3.8370734352633495`*^9}},ExpressionUUID->"d47985b5-48a1-456e-bd3a-\
8f160be15efc"],
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"\[Lambda]NUM", "=",
RowBox[{"8", " ",
SuperscriptBox["10",
RowBox[{"-", "7"}]]}]}], ";"}], " ",
RowBox[{"(*", " ",
RowBox[{"800", " ", "nm"}], " ", "*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"Wband", " ", "=", " ",
SuperscriptBox["10", "8"]}], ";"}], " ",
RowBox[{"(*", " ",
RowBox[{"100", " ", "MHz"}], " ", "*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"aRNUM", " ", "=", " ",
RowBox[{"1", "/", "10"}]}], ";"}], " ",
RowBox[{"(*", " ",
RowBox[{"0.1", " ", ";"}], " ", "*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"(*", " ",
RowBox[{"10", " ", "cm"}], " ", "*)"}]}]}], "Input",
CellChangeTimes->{{3.8370729445677166`*^9, 3.8370729793973*^9}, {
3.8370731004970713`*^9, 3.8370731030385213`*^9}, {3.8446786349637585`*^9,
3.8446786621644335`*^9}},
CellLabel->"In[7]:=",ExpressionUUID->"314d41f4-1f8e-4ff0-856c-9fa08e574aa3"],
Cell[BoxData[
RowBox[{
RowBox[{"hplanck", "=",
RowBox[{"6.62607004", " ",
SuperscriptBox["10",
RowBox[{"-", "34"}]]}]}], ";"}]], "Input",
CellLabel->"In[10]:=",ExpressionUUID->"15143ef7-26cc-491a-a986-bb039f0dc123"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"cLIGHT", "=", "299792458"}], ";"}], "\[IndentingNewLine]",
RowBox[{"\[Nu]freq", "=",
FractionBox["cLIGHT", "\[Lambda]NUM"]}]}], "Input",
CellLabel->"In[11]:=",ExpressionUUID->"060e3d7c-fce4-494e-89ff-1d2d458b1a36"],
Cell[BoxData["374740572500000"], "Output",
CellChangeTimes->{3.837072479725625*^9, 3.8370731042816424`*^9,
3.837517197386531*^9, 3.844676946858885*^9, 3.8446786698189774`*^9,
3.8450350019585342`*^9},
CellLabel->"Out[12]=",ExpressionUUID->"d046b895-da20-4fcf-8b86-78b9b41b07a5"]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"angleVIEW", " ", "=", " ",
RowBox[{
RowBox[{"(",
RowBox[{"1", "/", "10"}], ")"}], " ",
FractionBox[
RowBox[{"2", " ", "\[Pi]"}],
RowBox[{"360", " "}]]}]}], ";"}], " ",
RowBox[{"(*", " ",
RowBox[{
RowBox[{"1", "/", "10"}], " ", "degree"}], " ", "*)"}], " "}]], "Input",
CellChangeTimes->{{3.837072485092349*^9, 3.8370725240595927`*^9}, {
3.8370731272486467`*^9, 3.8370731403726635`*^9}, {3.837077138525388*^9,
3.83707714190773*^9}, {3.8370771878548155`*^9, 3.8370771969556828`*^9}},
CellLabel->"In[13]:=",ExpressionUUID->"1357aec1-5d79-4e0b-97a4-c8f1b0ad3fd3"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"\[CapitalOmega]fov", "=",
RowBox[{"N", "[",
SuperscriptBox["angleVIEW", "2"], "]"}], " ",
RowBox[{"(*", " ",
RowBox[{"in", " ", "steradians"}], " ", "*)"}]}]], "Input",
CellLabel->"In[14]:=",ExpressionUUID->"c0ce421c-9323-478b-86d1-fcb5ca7f2e89"],
Cell[BoxData["3.0461741978670857`*^-6"], "Output",
CellChangeTimes->{3.8370724800922174`*^9, 3.837072529176094*^9,
3.8370731052986374`*^9, 3.837073143015254*^9, 3.837077142808571*^9,
3.8370771988086786`*^9, 3.8375171988590107`*^9, 3.8446769469838543`*^9,
3.8446786730758934`*^9, 3.8450352354242983`*^9},
CellLabel->"Out[14]=",ExpressionUUID->"c670d49e-208b-4e11-beec-065f82550acb"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"N", "[",
RowBox[{
FractionBox[
RowBox[{"\[Pi]", " ", "\[Lambda]NUM"}],
RowBox[{"hplanck", " ", "cLIGHT"}]], " ",
RowBox[{"(", " ",
RowBox[{"1.5", " ",
SuperscriptBox["10",
RowBox[{"-", "1"}]]}], ")"}]}], "]"}], " ",
RowBox[{"(*", " ",
RowBox[{"converting", " ", "units", " ", "for", " ", "HskyDay"}], " ",
"*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"HskyDay", "=",
RowBox[{"1.9", " ",
SuperscriptBox["10", "18"]}]}], ";"}], " ",
RowBox[{"(*", " ",
RowBox[{"Cloudy", " ", "sky", " ", "800", " ", "nm"}], " ",
"*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"\[CapitalDelta]\[Lambda]", "=",
SuperscriptBox["10",
RowBox[{"-", "4"}]]}], ";"}], " ",
RowBox[{"(*", " ",
RowBox[{
RowBox[{"in", " ", "nm"}], " ", "-", " ",
RowBox[{"homodyne", " ", "detector"}]}], " ", "*)"}],
"\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{
RowBox[{"Wband", "=",
SuperscriptBox["10", "8"]}], ";"}], " ",
RowBox[{"(*", " ",
RowBox[{
RowBox[{"100", " ", "MHz", " ", "homodyne", " ", "detector"}], " ", "-",
" ",
RowBox[{"already", " ", "defined", " ", "above"}]}], " ", "*)"}], " ",
"*)"}]}], "\[IndentingNewLine]",
RowBox[{"\[CapitalGamma]R", "=",
RowBox[{"N", "[",
RowBox[{"\[CapitalDelta]\[Lambda]", " ",
SuperscriptBox["Wband",
RowBox[{"-", "1"}]], " ", "\[CapitalOmega]fov", " ",
SuperscriptBox["aRNUM", "2"]}], "]"}]}]}], "Input",
CellChangeTimes->{{3.8370729153769426`*^9, 3.837072918560115*^9}, {
3.837073063183638*^9, 3.837073077648113*^9}},
CellLabel->"In[15]:=",ExpressionUUID->"16e5eb05-57de-425d-8be3-a21d487bb430"],
Cell[BoxData["1.89781726661466`*^18"], "Output",
CellChangeTimes->{
3.8370729035297437`*^9, 3.837072983113837*^9, {3.8370730782150617`*^9,
3.8370731062318826`*^9}, 3.8370731438998137`*^9, 3.83707714359172*^9,
3.837077199358786*^9, 3.83751719969304*^9, 3.844676949101823*^9,
3.844678676922597*^9, 3.845035302717708*^9},
CellLabel->"Out[15]=",ExpressionUUID->"af0f919a-97c4-47c7-9928-b2a0f274f771"],
Cell[BoxData["3.046174197867086`*^-20"], "Output",
CellChangeTimes->{
3.8370729035297437`*^9, 3.837072983113837*^9, {3.8370730782150617`*^9,
3.8370731062318826`*^9}, 3.8370731438998137`*^9, 3.83707714359172*^9,
3.837077199358786*^9, 3.83751719969304*^9, 3.844676949101823*^9,
3.844678676922597*^9, 3.845035302733358*^9},
CellLabel->"Out[18]=",ExpressionUUID->"6ad87842-7452-422f-a11e-86de9fd7d5bd"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"nback", "=",
RowBox[{"HskyDay", " ", "\[CapitalGamma]R"}]}]], "Input",
CellChangeTimes->{{3.837072988313978*^9, 3.837073008780937*^9}},
CellLabel->"In[19]:=",ExpressionUUID->"ca8745a2-589a-465b-8228-05be9b96b1e4"],
Cell[BoxData["0.05787730975947463`"], "Output",
CellChangeTimes->{
3.83707300938597*^9, {3.837073078781521*^9, 3.8370731071658287`*^9},
3.837073144665369*^9, 3.8370771446749954`*^9, 3.8370772014754066`*^9,
3.837517200744093*^9, 3.844676951253254*^9, 3.8446786795277996`*^9,
3.8450353490152917`*^9},
CellLabel->"Out[19]=",ExpressionUUID->"e991a586-6d5b-46e8-852b-f76ab2426eb7"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{" ",
RowBox[{"N", "[",
FractionBox["578773", "10000000"], "]"}]}]], "Input",
CellChangeTimes->{{3.837078024478752*^9, 3.8370780550800867`*^9}},
CellLabel->"In[98]:=",ExpressionUUID->"f214d981-783a-4037-b0aa-e8487b2645ab"],
Cell[BoxData["0.0578773`"], "Output",
CellChangeTimes->{{3.837078050629119*^9, 3.8370780553288345`*^9},
3.8446786799339542`*^9},
CellLabel->"Out[98]=",ExpressionUUID->"2051dfa0-829f-4e4b-b1b1-018777849c5d"]
}, Open ]],
Cell[BoxData[
RowBox[{"(*",
RowBox[{"*", " ", "probabilities"}], " ", "**)"}]], "Input",
CellChangeTimes->{{3.837059219026568*^9,
3.8370592237101088`*^9}},ExpressionUUID->"b15fd94a-c7e1-4332-a2b4-\
439b04ec5f90"],
Cell[BoxData[
RowBox[{
RowBox[{"f", "[", "r_", "]"}], ":=",
FractionBox[
RowBox[{"r", "+",
SuperscriptBox["r",
RowBox[{"-", "1"}]], "-", "2"}], "4"]}]], "Input",
CellChangeTimes->{{3.8370585964390235`*^9, 3.8370586194184465`*^9}},
CellLabel->"In[20]:=",ExpressionUUID->"d06f9d04-0f80-4f6e-845f-0d0b9703f567"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Solve", "[",
RowBox[{
RowBox[{
RowBox[{"nS", "-",
RowBox[{"f", "[", "r", "]"}]}], "\[Equal]", "0"}], ",", "r"}],
"]"}]], "Input",
CellChangeTimes->{{3.837059379804179*^9, 3.8370593865274878`*^9}},
CellLabel->"In[21]:=",ExpressionUUID->"6655856f-5e9f-45b5-b474-6c328d9fcdd2"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"r", "\[Rule]",
RowBox[{"1", "+",
RowBox[{"2", " ", "nS"}], "-",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"nS", "+",
SuperscriptBox["nS", "2"]}]]}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"r", "\[Rule]",
RowBox[{"1", "+",
RowBox[{"2", " ", "nS"}], "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"nS", "+",
SuperscriptBox["nS", "2"]}]]}]}]}], "}"}]}], "}"}]], "Output",
CellChangeTimes->{3.837059386927231*^9, 3.8370771476253757`*^9,
3.8370772044755106`*^9, 3.83751720449728*^9, 3.844678682528516*^9,
3.8450365850283422`*^9},
CellLabel->"Out[21]=",ExpressionUUID->"ce98276c-eba0-440b-97aa-22b16809d6b8"]
}, Open ]],
Cell[BoxData[{
RowBox[{
RowBox[{"rmin", "[", "nS_", "]"}], ":=",
RowBox[{"1", "+",
RowBox[{"2", " ", "nS"}], "-",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"nS", "+",
SuperscriptBox["nS", "2"]}]]}]}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"rmax", "[", "nS_", "]"}], ":=",
RowBox[{"1", "+",
RowBox[{"2", " ", "nS"}], "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"nS", "+",
SuperscriptBox["nS", "2"]}]]}]}]}]}], "Input",
CellChangeTimes->{{3.837059410625389*^9, 3.837059441244351*^9}, {
3.8370594894942236`*^9, 3.8370595019611826`*^9}},
CellLabel->"In[22]:=",ExpressionUUID->"59e6ea32-0d4e-4bf6-a324-7bfc4470f7e5"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"rmin", "[", "nS", "]"}], ",",
RowBox[{"rmax", "[", "nS", "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"nS", ",", "0", ",", "1.5"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.8446769572561817`*^9, 3.8446770037535963`*^9}},
CellLabel->"In[24]:=",ExpressionUUID->"ab89428c-7f6e-4ce3-97fc-57d995c6d100"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwVlXk81Ikbx2dlsdVG1rEVYmhCP7Gd2vCxElKiJUpqkZuVbOuKTDmqacZd
VHKsrWHlKCSRvuOWI3JMWTTGPeRmRNj5/fG8ntfzz+fzfn2e1/N6lBwv/eos
RCKR4gT1/7543PuRxSV7vd8ydhuTVyYR6bRT9R1FD9tr/nwmmjmBpokBDwbl
JDZmbSjslp9AtvS/aR+TrSFCKbEIL/qMqYIjdC/KBZTpuDT/c+Eztqp1lq6x
HfHuw3fRK5KfoRtA+6k+2QWg78zQezcO+1o9ZpyDB7TbK8jXY8dxQ2ZWzo7i
jaIcoS9hZ8bx/rllfdy8DypaSRpuyuNw6tII57N94WWi5HNnegyRatwvRLIf
ErTSQ4i7Y5A9VVa4IzQAXxM+X93pOYbMgHuXaA5BCOud4HkYjKGh1nTQknIN
lvQJ8+p5HnL9JS3shKnIWfzfuahWHvzvhOZEzVMx6N/ATcjlQazgrNss+wZm
3X5mzHnyoC60qbcsORL7DteeYU+PYkb66uFJxk3Yml9ZNO4YRanaSJJS6C2E
ph2lu5eM4sSpCstIBxqs/J7cTQwbxaU0v3pzShQcyNrLRQqj0C7sp9yQjUZI
ZwFei4yC5KRqYCscg12vam9rT46g3v9uKn0+BrIqgzw/1ghsUy/ZTrPjsFk/
sCjRYwTBE8otr5LvQTU/muPQOAz7gK5VS+lE0AYXDLpKhmEoFKvxmZGIEUrA
5jjmML6XWaVtD02CX3We2cuwYaTofjga7vAATcmM4ly9YbDo9FIzSgpesnYX
L78eQjnvY+OGrBSM71+85ZIzhDKTnb31u1KxdLM84ptHQzgn5EDK+DENKeTw
PZXBQzhdvkzerpCOVIWmU9Z6QzA98JObrFoGtA8EHh+oG4TJINvHzyMDudO9
PuxXgzBOuBbYkZ2BD2fLVsaeDsJwpoEWv/tvtJhYZPjFDkIv1yVHfN9jBDh0
JpPsBrGXkjwjCia4HbGeHgsD2NNhsOxCZcJXM29JgzcArfDRdTUsJuIlidPr
ewewm3tAOtwwEw/2eNZtqBmAakrrQZJpFoSb3jyhJA5ATkY0ZNEqG5ZCWTQv
3QF8K+IrOuqRhyrH5iLlpH6MHAsVn2Xm4ag9VXdddD/eMuiyKwN5uF29yXQq
oh+1tLb4W5r5qJaLPznzRz/uSE5kJGfl4+SGry9jLfohRVauqnr0DCLbbRfk
N/aD8gtDWDqyAPPrC31od7iQ7Y8Xe/B3AbrO1hazw7gQi3iwcXtlAaoVbeN2
B3PBq2NKqZEK4fzxj4xFLy7yLCpUdIMKYbQpvGD5JBfa9nxDZ+8ilMf3xv4j
xcWxUIeIIutiLB6J7SM/6cOeaJZR+pVioGRRIjm1D3KpSmKMuGJ05/+qJne/
D1PlfTSn5mK4kqW7teh9uLfqEPOD0UvkWuyt+ce3DwMhjg8v7y/B4nf8bR36
faAGX3ymIVUK0itVzbw+DooDnXset5ZD9siku85eDp7oebK3zpRD2TbkBFOD
g3vrLrdGS75BiaiGjawqB36M4OpAyzeQazzKEpHn4EB6fI5ZxxucPtY5qyTK
wbkBTnmQFwGdb12nwl9+QtcG8WiyDws3epfbeT98wkdbT01f/0osJgwftujv
AY1r7JUYWYk9AZe8OV09+NlDJavsbiWsqJWFfu97kBzYQxYtrITIpi92Rawe
2CeZyyRPVcI+R0M/KK0Hwx17V6rdq/DA0Dtz2289mLf4+naLXTV8Ey0f0zjd
2GzMcGHp18LD5q+VvJl/IdHu/PzguQaEOx9s2KreBWVFr6wIx3eoO9TKDsr8
AO2e3xt+iWuFk/z7mjQvNlhL1BPtD9tA1a6Vz9LphNuburryGx2g6xQxS/U6
cP8ic6u0PRtfebEFuufboXGmb2HV+SPGt0bl9F9rQ++sebP+sX/R2O2Y7s56
j5lPW7RkTvfAKkZcZUn4PWKyg1xtbD6BRDr+Ysq2FRRxMbOAhxxYqd9ckalr
wQsfanaUYO9potWx5H0taN8RL3oqjgvOo450Mdd3UAlrUz1/vx/aZqVzFY7N
OGTxaV/qwwFI5Aa3fnOlCT0+EXoM+iCoGd8lNfzViOeHzn5fHTsERWetOqum
BshY137MjBjG1HRbqd/mBoBLiq24MgLq7116Mhff4r6M2/eUgFEQ+V7TS3n1
uJHifnO/Bw/6m/RP3tpcj0fNSTVRPmNQNN3iHuldhxDv+Cl533FoNZkw/+qs
xZiD6o9nHQV/ReFEQr55Le6s8IR7XSbQ8pOTL6WqBq/GjSc32U6Cah/W2GFc
g84d2tyfVaagGHz5vFpbNdzULmrGP57C1BEd8urZarCsz139RWEa1Ou1sS8+
V2HvGV6WVPo0OLN0j70hVfAKM2LrbpuBxHm2pPePVbjlIrb0TfwMFI+pDbqX
VOK1vMMaT2oWElaj+VbWlShZjVynHjWLlhfCc/YrFWguOMJjbJ5DS232yP20
CsEdu9TQ4+Yg4aoRzDepQHjx6fS+9fOwV8nzVFpiwY7cfeEcYx4cEXERJpOF
5Rea23aJLmCK4qJqeZ6F4HWjjXevLSDG5rFUpwwLMiqHHHaQ+NAP80vqbyTg
7209tz6QD9L57HEVGgG5A051lKt85Muuz127RYBYuZxsEMIHNa8wqesmgfUM
hmHQdT4Uhd6OxkQQSMmuShi9zUda/ErgGpVAzcie/XUP+PB532Y64E9A6qK4
X0QZHxKX5S83OhMoUZc3TS/no4W+bPrUicCFGXWF14SAp2STGf0igczrRjVz
VQI/yef1JxwIHE4LkXFq4mNqZiXjnR0Bx56xFwa9Ar7Owx3dlgREH3+hXeDw
YaHtvfvNrwSeeon+FsQV6K+a5aWfIrCwTBZ9PsQX5DW309WcAG2rrY3SpIBP
b2p21pSAJtd1l+60gJ+ccZt9jEB71p9rZ2YFeVwjjEpNCCgcimXG8PnQOrXl
YJgRgUpS6tWnXwSzuqGH61ECbnVPzeuWBX46L6uOGxLYGPNKeWBFMON3I60j
BJ7Z1PHX1gR647aTUgYE/gN5IJmb
"]]},
Annotation[#, "Charting`Private`Tag$25087#1"]& ],
TagBox[
{RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwVznk41AkYwPHJNaVCaGRifhETevYhtUVt3pfaSCna0LjKJCQhuyJH61aM
u1o0rqc8rdiUikI6hNFBLWUl5OoYLXP/HA3b/vF9vv9+DNihB44pUCgU9vf+
//SekGLn0CM2Gfvt5SGLBJDqt86ki2kDz5jq/Sm3BfByciwok7kPRMU1X40o
Qqha2V/Wx3UDLYedt95tE4Lg9g5OMNMH3IxZyq9DhEA3fdu40MsG/kPRlg1c
IWyPSt/QwfWH1/u6sKhVCIk0sZ4XMwQOZt9rVNUQwd+1v3TkScNgYvzqJkNL
Efi9+yGZ7A2HTVoUZtEBEaSajsw84p4GLwGtNS9bBM/bHcd/YZ4Fcqz4Wp1c
BDciNZ29lOIhQId/x1NHDJEZv/+VJY2HIFRRYluIYfFtVqC4NxEYhRUHW4+I
wUxBbbCJmwpRf3O2zjaKIbTsdMd+Zhb0XKmJ7/WVgNWdUWaiTjb4WXqf8o6Q
AMXPxM5DKQfMKm0OV56TQEfkxVKONAfCWlMPFt+QgEdpqIewNw8mWfytG6cl
EDu59lUD9xL0+Dc0FSVJ4TGH0+jELAFBgAElIEkGzfy+F0srS6AuySVqIF8G
TQ7rBjvWl0K2hWL/tqsy8FTwpVxZVQZytWdttU9l4No8Z0gwyiH6c1RjgRIJ
jps3BOqYXoEbGbvbb8aTsJHJFVHhGrwpTOdVBU+Dsko49UtQDfioU3ftMZiF
3b/7ptx1q4e3D7IFlxXkUH/m2EDF62YYafK1e160AH0eJ8zDI1tAZ8w7Odxg
Ea6wz/R/jO3QqzLFeueigBo9x2q3eD6Hg+cs89NzFXHtmuDKFHYXvPpwRD2v
RQmtBk4+t817DYLr719w+pXx8Wz83p7L3eB8KU3BVYWKgQ95vObEN2B47+RU
mu5iLDx6jb7ySC8E/zb8lm20BH84NCybP9YH9z43K6/doYqD4v2duLsf3Erm
LH/duxRFQ7oWNNcBmJSnd08cX4Y5VdEB7u5DwJOKuU7xy5Gpvtgp6vIHeG/q
fjIiUQ3rwuKrskqH4UmXPUu1UB17jPOpLnkjMDfeYCNw0kCjpG4T78JRMPnU
ElvQp4HWzkObSi+PQfWT0Qxz9gocCEuxyeSMw4ETiXYWwyuw1pq1vDX3I9zU
PfEhMkgTaW7tfX+mfILYpcr1DnxNhBFK7pPfPsOd4vOXHAK0sJAWuJwZ9QXa
KkzM8ye1MLHkeNqPQXzo6rRLyArWxuLOgrassAmQcxUtuiXaGBeSL9AP/wo9
YeqjrOiVOOFrsorF/hfmu05Ra2QrMUPOVxr0nwQr75FOpzgaNny1n1LzmAJW
P3TwZmn41thqZKuRAKSFe/8oj9DBQNOj5vkVAnCwd7FpmdXBx26eMbYMIdyl
v2zrPr0KNx7iV2qXC+GC4KLaevkqDE7a1bt9tQiSeTX+0dG6eM5/8eyifBGA
3tD1zVJdfKDvu8DXFoNedx/LKpqO9+dTFc2yxKDQ93HORkbHzts7+JkrJJDj
Ok8/H7saW9f4t3HyJMC5m6z6M0UPk+tdy4dVpeBrM31RI0YPvQzf+3hmSsH4
ehWTQdHHuTrz1eupMnia8jUBY/UxVvHLi4tnZfDonx16Q1J9pBlZ+xpTSPgW
GrGz+QwDI0PcJKpnSMjWEr64L2Gg3mY/HjOGBJ9x8bNBGQMfyU9x7eJI2Hmo
ul1xhoGqmZk7oxNImPkJHjjJGVhS9fTCl/MkLHooKRhWJrDts+WPvCISLB3f
ay7RIVD7qPrplCYSOJGpmu7WBN4303csbybhwL7WTzHbCPQRmTEePCLhQuyT
xrLtBP6ZsKtN8pQEbeH0Yb4tgdvK4mh+L0m4etO7MM6RQPbARJ3dIAnV87av
rngSSK2YSff58N23MTWX501gdTD1cPQICXXfOC7/HiZQNmdIrf1IQrfH6MvN
fgSm0z3cDaZIuFTQUN8RTKD5SMD67UIS6B300MkQAnsqIxYOiUkYqwBjrVME
Mqxzr+WQ330h/2R6RRDYQimNqZ4hIXxoLyZEEhjIq97PmyMhUSVNWHGGwGU5
DWvH5CSoMdPKn8UQeMudRy4skOAS7+Q8FUfgf1Oa+R4=
"]]},
Annotation[#, "Charting`Private`Tag$25087#2"]& ]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0, 1.5}, {0., 7.8729832217505455`}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.8446769690675297`*^9, 3.84467700496594*^9},
3.844678685472618*^9, 3.8450365960964518`*^9},
CellLabel->"Out[24]=",ExpressionUUID->"c68bb147-9e0d-41fa-ab2a-23c0fd03bfd4"]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{"\[CapitalOmega]", "[",
RowBox[{
"\[Eta]_", ",", "nS_", ",", "nB_", ",", "m_", ",", "r_", ",", "t_"}],
"]"}], ":=",
RowBox[{"Erf", "[",
FractionBox[
RowBox[{"t", "-",
RowBox[{"m", " ",
SqrtBox[
RowBox[{"2", " ", "\[Eta]",
RowBox[{"(",
RowBox[{"nS", "-",
RowBox[{"f", "[", "r", "]"}]}], ")"}], " "}]]}]}],
RowBox[{
SqrtBox[
RowBox[{"m", " ",
RowBox[{"(",
RowBox[{
RowBox[{"2", " ", "nB"}], "+", "1", "-",
RowBox[{"\[Eta]",
RowBox[{"(",
RowBox[{"1", "-", "r"}], ")"}]}]}], ")"}], " "}]], " "}]],
"]"}]}]], "Input",
CellChangeTimes->{{3.8370585761243763`*^9, 3.837058582157502*^9}, {
3.837058642210827*^9, 3.837058716676939*^9}, {3.837058756291479*^9,
3.8370587564917593`*^9}},
CellLabel->"In[25]:=",ExpressionUUID->"7ffe6a70-fc6b-4b35-a7bd-845c05a9bd26"],
Cell[BoxData[{
RowBox[{
RowBox[{"pFA", "[",
RowBox[{
"\[Eta]0_", ",", "nS_", ",", "nB_", ",", "m_", ",", "r_", ",", "t_"}],
"]"}], ":=",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"1", "-", " ",
RowBox[{"\[CapitalOmega]", "[",
RowBox[{"\[Eta]0", ",", "nS", ",", "nB", ",", "m", ",", "r", ",", "t"}],
"]"}]}], ")"}]}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"pMD", "[",
RowBox[{
"\[Eta]1_", ",", "nS_", ",", "nB_", ",", "m_", ",", "r_", ",", "t_"}],
"]"}], ":=",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"1", "+", " ",
RowBox[{"\[CapitalOmega]", "[",
RowBox[{"\[Eta]1", ",", "nS", ",", "nB", ",", "m", ",", "r", ",", "t"}],
"]"}]}], ")"}]}]}]}], "Input",
CellChangeTimes->{{3.8370587798443303`*^9, 3.837058825108749*^9}},
CellLabel->"In[26]:=",ExpressionUUID->"d83f4a33-cb39-4578-a56b-b14265e5badb"],
Cell[BoxData[
RowBox[{
RowBox[{"pERR", "[",
RowBox[{
"\[Eta]0_", ",", "\[Eta]1_", ",", "nS_", ",", "nB_", ",", "m_", ",", "r_",
",", "t_"}], "]"}], ":=",
FractionBox[
RowBox[{
RowBox[{"pFA", "[",
RowBox[{"\[Eta]0", ",", "nS", ",", "nB", ",", "m", ",", "r", ",", "t"}],
"]"}], "+",
RowBox[{"pMD", "[",
RowBox[{"\[Eta]1", ",", "nS", ",", "nB", ",", "m", ",", "r", ",", "t"}],
"]"}]}], "2"]}]], "Input",
CellChangeTimes->{{3.83705884412106*^9, 3.8370588774252415`*^9}, {
3.8370589179726486`*^9, 3.837058918675704*^9}},
CellLabel->"In[28]:=",ExpressionUUID->"fe470852-4364-4086-b583-d2e193baa3ba"],
Cell[BoxData[
RowBox[{
RowBox[{"zmean", "[",
RowBox[{"\[Eta]_", ",", "nS_", ",", "m_", ",", "r_"}], "]"}], ":=",
RowBox[{"m", " ",
SqrtBox[
RowBox[{"2", " ", "\[Eta]", " ",
RowBox[{"(",
RowBox[{"nS", "-",
RowBox[{"f", "[", "r", "]"}]}], ")"}]}]]}]}]], "Input",
CellChangeTimes->{{3.8370589665092936`*^9, 3.8370589945928984`*^9}, {
3.8370591383930187`*^9, 3.8370591847766914`*^9}},
CellLabel->"In[29]:=",ExpressionUUID->"4c5b6fe9-3cfe-4108-9d4e-9440ad5437b9"],
Cell[BoxData[
RowBox[{"(*",
RowBox[{"*", " ",
RowBox[{"numerical", "/", "testing"}], " ", "parameters"}], " ",
"**)"}]], "Input",
CellChangeTimes->{{3.8370584413860846`*^9, 3.8370584431404514`*^9}, {
3.837058498286044*^9, 3.837058500940712*^9}, {3.837073522902562*^9,
3.837073524435645*^9}},
CellLabel->
"In[610]:=",ExpressionUUID->"f989a53b-b3e4-4301-ab83-c62657a28c4c"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"\[Eta]0num", "=", "0"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Eta]1num", "=",
RowBox[{"2", "/", "10"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"nBnum", "=",
FractionBox["578773", "10000000"]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"nSnum", "=",
RowBox[{"1", "/", "10"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"mnum", "=", "10"}], ";"}], " ",
RowBox[{"(*", " ",
RowBox[{"testing", " ", "value", " ", "only"}], " ",
"*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"tnum", "=", "1"}], ";", " ",
RowBox[{"(*", " ",
RowBox[{"threshold", " ", "value", " ", "for", " ", "test"}], " ", "*)"}],
"\[IndentingNewLine]",
RowBox[{"N", "[",
RowBox[{"rmin", "[", "nSnum", "]"}], "]"}]}], "\[IndentingNewLine]",
RowBox[{"N", "[",
RowBox[{"rmax", "[", "nSnum", "]"}], "]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"rnum", " ", "=",
RowBox[{"6", "/", "10"}]}], ";", " ",
RowBox[{"(*", " ",
RowBox[{
RowBox[{"squeezing", " ", "for", " ", "testing"}], " ", "=", " ", "0.6"}],
" ", "*)"}], "\[IndentingNewLine]",
RowBox[{"N", "[",
RowBox[{"zmean", "[",
RowBox[{"\[Eta]1num", ",", "nSnum", ",", "mnum", ",", "rnum"}], "]"}],
"]"}]}]}], "Input",
CellChangeTimes->{{3.818586728815115*^9, 3.818586762682409*^9}, {
3.818591090981303*^9, 3.818591091197733*^9}, 3.8185926803088284`*^9, {
3.8185927142674227`*^9, 3.8185927190129366`*^9}, {3.8185955265486126`*^9,
3.8185955288206997`*^9}, {3.818597348819919*^9, 3.818597370335909*^9}, {
3.8186110957506294`*^9, 3.818611101700478*^9}, {3.837058495419982*^9,
3.837058495557536*^9}, {3.837059264868888*^9, 3.8370592952438946`*^9}, {
3.8370593327938333`*^9, 3.8370593350439816`*^9}, {3.837059522699581*^9,
3.8370595378499503`*^9}, {3.8370620954295073`*^9, 3.837062100835696*^9}, {
3.8370629778793387`*^9, 3.837063024426381*^9}, {3.837064921240126*^9,
3.837064921408561*^9}, {3.83706496158817*^9, 3.837065014799161*^9}, {
3.837073445423647*^9, 3.8370734573664646`*^9}, {3.8370734886637425`*^9,
3.8370735208187017`*^9}, {3.837073579552035*^9, 3.837073582851056*^9}, {
3.8370736926369886`*^9, 3.837073702102214*^9}, {3.837073766159895*^9,
3.83707376664089*^9}, {3.8370737971039*^9, 3.8370738041880217`*^9}, {
3.8370771234934783`*^9, 3.8370771236584435`*^9}, 3.8370780619603233`*^9, {
3.844677272311138*^9, 3.8446773039902*^9}, {3.844678697332971*^9,
3.8446787095139847`*^9}, {3.845038973243894*^9, 3.845039005936458*^9}, {
3.8450390531330214`*^9, 3.845039073543357*^9}, {3.8450391401710815`*^9,
3.8450391760020723`*^9}},ExpressionUUID->"3f9825e1-ffe3-48ca-9782-\
1944865784fb"],
Cell[BoxData["0.5366750419289199`"], "Output",
CellChangeTimes->{{3.845039039305214*^9, 3.8450390541439385`*^9}},
CellLabel->"Out[47]=",ExpressionUUID->"be1a1823-1c81-451a-85e7-2bf81cd087fa"],
Cell[BoxData["1.86332495807108`"], "Output",
CellChangeTimes->{{3.845039039305214*^9, 3.8450390541439385`*^9}},
CellLabel->"Out[48]=",ExpressionUUID->"71d9ad87-147f-4cee-b24a-4b7870c7074f"],
Cell[BoxData["1.1547005383792517`"], "Output",
CellChangeTimes->{{3.845039039305214*^9, 3.8450390541595445`*^9}},
CellLabel->"Out[50]=",ExpressionUUID->"9cafd59f-940a-4a6d-9553-42180ddc4cf7"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"N", "[",
RowBox[{"pERR", "[",
RowBox[{
"\[Eta]0num", ",", "\[Eta]1num", ",", "nSnum", ",", "nBnum", ",", "mnum",
",", "rnum", ",", "tnum"}], "]"}], "]"}]], "Input",
CellChangeTimes->{{3.8370593300603848`*^9, 3.8370593519771867`*^9}, {
3.837073696161501*^9, 3.837073696934411*^9}, {3.8446787233994083`*^9,
3.84467872533258*^9}},
CellLabel->"In[51]:=",ExpressionUUID->"753eb2d4-eff1-4641-ba49-e232618601d4"],
Cell[BoxData["0.4044549275610046`"], "Output",
CellChangeTimes->{
3.837059352427331*^9, {3.837059558993519*^9, 3.8370595623113146`*^9},
3.8370630278713827`*^9, 3.8370649312421722`*^9, 3.8370649782422943`*^9,
3.8370650241591496`*^9, 3.837073496752104*^9, 3.8370735321679044`*^9, {
3.8370736973868413`*^9, 3.837073703470751*^9}, 3.8370737680209084`*^9,
3.837073808754653*^9, 3.8370771571420155`*^9, 3.8370772136421647`*^9,
3.837078065229244*^9, 3.837517213939027*^9, {3.844677293155753*^9,
3.8446773050112762`*^9}, {3.8446787204039297`*^9, 3.8446787256604967`*^9},
3.845039213687895*^9},
CellLabel->"Out[51]=",ExpressionUUID->"a2946d09-dbd5-49d9-b58a-31e225b7cfb7"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"pERR", "[",
RowBox[{
"\[Eta]0num", ",", "\[Eta]1num", ",", "nSnum", ",", "nBnum", ",", "mnum",
",", "r", ",", "tnum"}], "]"}], ",",
RowBox[{"{",
RowBox[{"r", ",",
RowBox[{"rmin", "[", "nSnum", "]"}], ",", "1"}], "}"}], ",",
RowBox[{"ImageSize", "\[Rule]", "Small"}], ",",
RowBox[{"Frame", "\[Rule]", "True"}]}], "]"}]], "Input",
CellChangeTimes->{3.844677331521136*^9},
CellLabel->"In[52]:=",ExpressionUUID->"1bf26b71-e124-4b42-9075-fa27c5e2493b"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwV1Xk8VdsXAHA8SZIkiQy/UJKZzGSZSSrkVfSEIpTMVCpTmaonlSfVNRQR
SShCeiWqizTfa7i4zjUP92xDcd974rfPX/fz/exzzl17rbXXVjwa6uYvwMfH
J8bPx0f9Hv3qqBquQcDP1fU2ObIDcM2Mt/2uJgFT9ay7NeNsaCwqUX+rRYBU
e7e0fCsbxtcc1ETaBLyTGR/6rZINUqeFtGV0Cbjq+0Sz4w4bbAZqdGz0CHDy
+uuORBobwnb5653aQUBP0QV3udNsaJdtMWgyIIC+wqqJe4gNvEuRRpOGBPCS
z9DNd7NBhVQy2WBMwOLoSnV7CzYkvE40DzIlwPyt/05FFTbo+4PNOiCgdsta
C7X/+sH3I2lrZknApgbhQoeZfsgwyrP3tyKg4pWY+uPRfhhb9WtXvQ325b2T
Jox+oFU0uPg6EnBHrFKRXd0PK3gGR6pcCfie9D9TenQ/6PkOe7PcCMhTtBeq
CekHn7Ys3xXuBOx1XOA0BvRDA23Oz+MAAdl/21nIePZDiFXVSf7DOF7J1Bdj
0A/MyxpnXf0IyIgmanas7YeH8spZMzEEcLYqvvha1wfHhoeL9c8QkKW98MDv
aR8oPH5Yf/osATqRkscFKvrgL3Mt9q9zBHz1lHT2KeyDpMMmaiKJBLgvDmfk
ZfSB1+19r5Wu4P9PeXp47ngfSGw4P7U/n4AIz9jPrfJ90NFrsZxdQED1Bes/
I2X6IK2IX6LnHgFlQwnPlTf0wfKOVCOfIgIElFRmskX7YMrtRlJwKQGC/BX+
7/7rhXeZD6WTnxLgmTdxzZDVC+dEGba17/H/PRlt7cvthaQbTeQgnYACJWP1
U3d6IU26ImddGwF8+WfM+W71QtaW1KngDwQUx5Y46Gb2QoW5SZbyFwK2+F7i
vUzqBSI4dzCzh4DMF0vCsYG94NDhn3SSi+vXXOJsb9gL6zPmX21ezwE/xp9O
37pZoOK1It5RkgP0y529yp0sMNaQtAjbwIGWrBVxMd9Z4NWm2/hqIwfcjD71
K35iQYnQqbojchyY3/+0LrOFBWbxg5W0rRwwPvB9sP0JC46Ffb4nbcyBsGeZ
pfdTWfDUreyiuBcHohS7osCcBQMNBldtH3PgcLbYCb1HPfCtRsdbgceB83t0
bZ4Z9MB+999Om+8aBImbiZnRb7uBZRDYyc4ZhK9PNEpuHOsG1TJzge2Dg3Ai
Xqbg6LpuEHgzFl67Ywhie+Scql93wb1gwfLxuCE4aHFJyuB8Fzh6Vmvdpw+B
qYDJxUcWXXBh0mg+T3oYBr4tFkbwd8HptZppVseGQSzMzG7+QycsMf85ovps
GHKuftyZk9MJfxKH4rJ+G4HLZJzqvqBOIOK2BRbvGQG/s515Vyw74c2rjuzF
XLxuG2XzYGMnBN0cvMYbG4GUGol21x9MyBX50mFsOgrzM+9iBj8zobvFxX0p
fRSk4sbsmyqZ0LPO8kHQ91G4vt9gz0IWEwIFVprJbB2DxpyH6aJnmfAieefd
kLAxSOWZN034MEHKWch2VwO26inlOScmLNcU6waKjAM9daF6UJ8Jj6trxzV+
H4elQqGMXkUmjLnljRgUj4OfiI8EQ4wJ6obSGi0/xyHwAfdc2S8G7CjnN+fB
BES0DHdzSQbQ377JDMucgIEDT1OtBxigHDH3JIM1AdUmLy+++MaAZN/ajXpb
J6H6Vf7keToDon+4tMhET0KAlUjKsZcMUNt02Kzk1STU+7n7CT5jQPCg+cIZ
8Snw5DhND5QxIBIyLkwfngIz/49x1oUMSOoPd+Y+mAJj79XsuzQG/E9R00dr
fgp4u8Mj7LIZkDh/0GKDFRf4An8Kb73OAD++oQkPay7o/3soXBzbUSTsVp4N
F1SFw0b/y2SAuELa9DZ7LvQIP1n8ip1nV3ffdDcXFAjN9kTsxizplT6/cyE2
VHaeuMYAnl73p7IgLhxfZRlZnsGAsFBPX8sbXCiTdU8PusoAnzfCyvE3ubC0
/TLtELbLhudDL7Pw+qqARgdsnRfrA81ucYHJElVSwUZCHSGGNC5M2328NHiF
ASF5cF6jmAtRaw4U+2AHd2y5Jd3Ahc8Zwrv9LjMgQB19mCa4oKgWUpqZxoD7
5u+3bhrkQnFAZvNF7N49+XE2Q1ywzrQdi8F2C9unkz3ChUOuf7h6YVvUPLlp
NskF43D5+2rYUhDmmfKDC6yLKebvUxnw1m1mVHYlCZmOa5yEsfn8Wi3thEmw
zvJ/upjCANPoe7dDVpEQKK6wbQa78pbr7qbVJIjGl2r2YNN6qyqOi5NQd225
thw76nhEdJUMCQ/L3Ov3YyvHzgk4aJAw8VImojSZAVPj/cHpmiQY0x7a52HX
erQx27VIiH2hu+0mtqPJvTIXXbxupC56ATuYt9fN05CEzXdT/F2p52PK7p2y
xPHlm7svXsLPR/paZrmTkHK7QvIw9rpB5zLm7yTMG076uWL3uBlLyhwkoXd2
5LUDdrDe2rFcDxK6kyVp+tjXZxqvlRwhoSFqA1uMej5Umt0QSILUetnstxfx
88GfLhDn8Xp9zQsz7IQ7Q3FicXi/CjOr9bGz6P/Em8WTsHra6LgG9sstW5L+
SsTxbeMYy2OL9Z1J2ZVCQrBa4oHlJJy/PUrXqq6RsNRTHv4W+4dWdEHifRL6
q8blPbCFvS7fqyjEDuwqd8OWu5J/n1VEgn7zAztnbLvR1iKDEpx/DjMLsLPz
FUrHH+H8HQkuVcE2FqdXudaQoGeqVzafyIBzM5uaFekk3BAr58vDpgW6dTu2
kjDts8DJwW5kp6PQNhKmjv318Sb2YgdP9u8PJPicbWlKx44rY0Z5fiHBbah9
Ywx2wrEbKjd7SPjKDkx0wS7oaTVvYJFwpGgXbzd2kyv/fqKXhEOGQWccsAUs
w+K12SRYMryzLLAvyu3tah8kgX5T2EwTO4Wx6rIgF3+vzcBaFLvY2apAnSRh
k3WYszD2++YztW6IBKEFhrcgtnD1KKdgBveDlcL9xQQGpGe8Nds5j+M9l5DF
xb7qkMiNXiah8sUF7S/Y5X/X/ZbLh/B5YLV3YH8wmJZp4UfQPOIS3oa9Zou3
vYQggijn+M5m7Ay+nfkVwggGat6LP8e+Xs9zGV2HwJH2yyAf2/KazZlt6xFc
2rdfhYZN+mXkB0giSJ2yV7yN7Sy+hRyVQkCO8BvdxBYK2HdlTBbBDZFcIhX7
mfmdalV5BHsN61SSsY9JDHcHKiAQ8PKPScJ+/TJWdXwzAt6jUIML2LGSxW/H
tyI43rtJLxJbdWJ6avs2BGpBtPYw7M5XZpInVBFoyheFhmDrn/xydEINgaSM
ZWcQFV/T4vKENoKnTolbfLFptxy2qesi+M4TkfDG3n3qxt6TegjPrbUiXtgP
pVVzJ/URdLUkyHhQ8YXuN50yQZBkR9S4YkvY5flqmCEQfbRhYR8V76bxtGBz
BPcH6qz3Yiu8i+ucskBw+4fdP07YXXJlUVwbBD7H3AZtsVNmf9zVtEMgPPH9
tA22AR2aT9kjaGhskLLGvhHJWEc6Ivj3SlkkUPls43tC7kEw8Xm21BT73/zd
TK19CISeBVw3wS6Nzv4V4oLA6Kz+RWMq34oazsgNQdbip2RDKt/zMZHa7gjk
hu9mG1D7+dB0J/R3BBGCDVX6VPynD46jgwieWY4K7cAO2XNfXMcDgc6VOUs9
bHllrlGYJ4KCAOdkXap/eEbelYcRfD41/U2Hqs/HpJTpPxCMG/RrUN5e1PFY
5wjuj0OSmdrU/s9KM8K88fsh139pUfvdWqE844tAn+W5oImtVa/EkT2G8xGw
9gpl1T23Cuz9ECQsV22jrESs9g73x/lPsurQwJaLTpCnHUdg+LHxHGWpVT9Z
7wIQbGpS2kF5bW7QnZlABNMmEXPq2MK6/YfkTiD4sLGskbLAW7eNDicRiJu2
ZlBePPSeER6MwC/hYxDl+SmzLNopBG/a6vZQnk6odHsfgiD4nxRTyuOSW9fN
hiKYnTLSocx5ePuTXDjOV0qbFuVec7EMhwjcT8U7DSkzPyc5R0QieK2VaU/5
s9+CSG4UAlv+Jm/KbbyTre+jEQwtf0yk3Hx1IHU2BsGCaH055cbNv9vLn0Gg
sDpugHLts1ZBx7MIHPrk5Kn9VjpaNEfEIig7nnWUcllvdWLuOQRtlwcrKReF
bbOkn0cQrblKmMpnriBtafYCArqeYCDl7Bzxl/LxCJTiv32mnKmRfM4xAffT
QrQ1Va/Lr/8xiUxEwJcw0Uj5knsILzcJ52dJ25Kqb9wYp5Z+EYGIh90HyqfP
H4yeu4SgNmq7L9UPJ4osZx1TEaxL93hA9Y+fcU1lZBqCkb2F7lR/eX3YHpqX
jvMb9lyU6j+XHxJTc1cQSPiZ3qL60ykttUzhTwQPV5QEUf1rK7cYuCsD5+te
ty3V30a2w8N5mQiOBl/dQPW/TpdHUet1/L1gkdXU+VAL/nj0xw0EpSJOq6jz
o5D1nL3rL9z/9FWbzbEFh9K7f9xG4DQWXGuJvXR66db/7uL6xnTPWGEvrI48
4ERDUM5bMqDO68SOP77l5yHQSA7rssP+clGrw6kQgcW9T8m7qXpuLLwSXYTn
24NhoT3YLY82OhU8wP37W3kmNR/qvvG9/1mC659q9zc1T/KUv70uKEdg1/Zn
4iFsetqLneRjBKqvIy94Ys9xCxvMniDQalK69Ae2Y13UM2YVApUlRpUP9qyz
1EPR57jftAIzqHknV720xbMO59f21MBJbIeNo/dK6vG8K9LeSc1HGvH8rnUj
nreBI1LUPLWP8bh2pgmff5U5J2rehrGsRN+9weejsn42HvuupVr6+hYE53t1
H1DzeVrkv6SKd/i+2K+rloZ9J58WM9SOINbW9hk17xGd7eXCRJAxcfp9OfYm
LXpPbicC04ZHMpVU/W5WHpzsQtCjGxvzlHrfK9E1hYXjDST2NVDrs0p2jQMI
lsyrEunYObLHNVQn8f0lvmlgBPtNwt7S6CkE9rf3siawucOGKs1cBPMmKwkS
27py5eYj0wgENZdXL2BP2Zauz/qJwK2bw16J70+psuuZxDzuZ/l12tR9a7U2
do02D8+zg3Vp4tjZ3U4r2/7F80Ut+LAM9muLHZc2LuL6LUV/l8eeLJTl9/+F
57nN3EEl6nurBOOql/B9lMMZVsG2DJn6d3kZQQnNOk4d+//AAZSH
"]]},
Annotation[#, "Charting`Private`Tag$25246#1"]& ]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0.5366750419289199, 0.33594779557651844`},
DisplayFunction->Identity,
Frame->{{True, True}, {True, True}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
ImageSize->Small,
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->
NCache[{{Rational[6, 5] + Rational[-1, 5] 11^Rational[1, 2], 1}, {
0.33594779557651844`, 0.5033685038291639}}, {{0.5366750419289199, 1}, {
0.33594779557651844`, 0.5033685038291639}}],
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{3.844677331880434*^9, 3.844678728792799*^9,
3.8450392390302*^9},
CellLabel->"Out[52]=",ExpressionUUID->"dcfc2eb9-b484-434f-8ad9-ad8a7faba396"]
}, Open ]],
Cell[BoxData[
RowBox[{"(*", " ",
RowBox[{
"symmetric", " ", "threshold", " ", "equal", " ", "to", " ", "half", " ",
"the", " ", "mean", " ", "value"}], " ", "*)"}]], "Input",
CellChangeTimes->{{3.8370597050282965`*^9, 3.837059764695508*^9},
3.8370600377706337`*^9, {3.8370621259689803`*^9, 3.8370621272524796`*^9}},
CellLabel->
"In[552]:=",ExpressionUUID->"f6780ee8-ce19-481b-8b49-4693114f6117"],
Cell[BoxData[
RowBox[{
RowBox[{"symthreshold", "[",
RowBox[{"\[Eta]0_", ",", "\[Eta]1_", ",", "nS_", ",", "m_", ",", "r_"}],
"]"}], ":=",
FractionBox[
RowBox[{
RowBox[{"zmean", "[",
RowBox[{"\[Eta]0", ",", "nS", ",", "m", ",", "r"}], "]"}], "+",
RowBox[{"zmean", "[",
RowBox[{"\[Eta]1", ",", "nS", ",", "m", ",", "r"}], "]"}]}],
"2"]}]], "Input",
CellChangeTimes->{{3.8370599638961716`*^9, 3.8370600180962067`*^9}},
CellLabel->"In[53]:=",ExpressionUUID->"ef80fcd8-cdca-46e2-9d02-687bcccd926c"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"tcheck", "=",
RowBox[{"symthreshold", "[",
RowBox[{
"\[Eta]0num", ",", "\[Eta]1num", ",", "nSnum", ",", "mnum", ",", "1"}],
"]"}]}]], "Input",
CellChangeTimes->{{3.837060024153881*^9, 3.8370600348932204`*^9}},
CellLabel->"In[54]:=",ExpressionUUID->"03cd28d6-6217-4e90-89d0-96b83535da5d"],
Cell[BoxData["1"], "Output",