-
Notifications
You must be signed in to change notification settings - Fork 0
/
aprub.sthlp
188 lines (109 loc) · 5.18 KB
/
aprub.sthlp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
{smcl}
{title:Title}
{phang}{cmd:aprub} {hline 2} Estimate the upper bound on the average persuasion rate
{title:Syntax}
{p 8 8 2} {cmd:aprub} {it:depvar} {it:treatrvar} {it:instrvar} [{it:covariates}] [{it:if}] [{it:in}] [, {cmd:model}({it:string}) {cmd:title}({it:string})]
{p 4 4 2}{bf:Options}
{col 5}{it:option}{col 24}{it:Description}
{space 4}{hline 44}
{col 5}{cmd:model}({it:string}){col 24}Regression model when {it:covariates} are present
{col 5}{cmd:title}({it:string}){col 24}Title
{space 4}{hline 44}
{title:Description}
{p 4 4 2}
{bf:aprub} estimates the upper bound on the average persuasion rate (APR).
{it:varlist} should include {it:depvar} {it:treatrvar} {it:instrvar} {it:covariates} in order.
Here, {it:depvar} is binary outcomes ({it:y}), {it:treatrvar} is binary treatment ({it:t}),
{it:instrvar} is binary instruments ({it:z}), and {it:covariates} ({it:x}) are optional.
{p 4 4 2}
There are two cases: (i) {it:covariates} are absent and (ii) {it:covariates} are present.
{break} - Without {it:x}, the upper bound ({cmd:theta_U}) on the APR is defined by
{cmd:theta_U} = {E[{it:A}|{it:z}=1] - E[{it:B}|{it:z}=0]}/{1 - E[{it:B}|{it:z}=0]},
{p 4 4 2}
where {it:A} = 1({it:y}=1,{it:t}=1)+1-1({it:t}=1) and
{it:B} = 1({it:y}=1,{it:t}=0).
{p 4 4 2}
The estimate and its standard error are obtained by the following procedure:
{break} 1. E[{it:A}|{it:z}=1] is estimated by regressing {it:A} on {it:z}.
{break} 2. E[{it:B}|{it:z}=0] is estimated by regressing {it:B} on {it:z}.
{break} 3. {cmd:theta_U} is computed using the estimates obtained above.
{break} 4. The standard error is computed via STATA command {bf:nlcom}.
{break} - With {it:x}, the upper bound ({cmd:theta_U}) on the APR is defined by
{cmd:theta_U} = E[{cmd:theta_U}({it:x})],
{p 4 4 2}
where
{cmd:theta_U}({it:x}) = {E[{it:A}|{it:z}=1,{it:x}] - E[{it:B}|{it:z}=0,{it:x}]}/{1 - E[{it:B}|{it:z}=0,{it:x}]}.
{p 4 4 2}
The estimate is obtained by the following procedure.
{p 4 4 2}
If {cmd:model}("no_interaction") is selected (default choice),
{break} 1. E[{it:A}|{it:z}=1,{it:x}] is estimated by regressing {it:A} on {it:z} and {it:x}.
{break} 2. E[{it:B}|{it:z}=0,{it:x}] is estimated by regressing {it:B} on {it:z} and {it:x}.
{p 4 4 2}
Alternatively, if {cmd:model}("interaction") is selected,
{break} 1. E[{it:A}|{it:z}=1,{it:x}] is estimated by regressing {it:A} on {it:x} given {it:z} = 1.
{break} 2. E[{it:B}|{it:z}=0,{it:x}] is estimated by regressing {it:B} on {it:x} given {it:z} = 0.
{p 4 4 2}
Ater step 1, both options are followed by:
{break} 3. For each {it:x} in the estimation sample, {cmd:theta_U}({it:x}) is evaluated.
{break} 4. The estimates of {cmd:theta_U}({it:x}) are averaged to estimate {cmd:theta_U}.
{p 4 4 2}
When {it:covariates} are present, the standard error is missing because an analytic formula for the standard error is complex.
Bootstrap inference is implemented when this package{c 39}s command {bf:persuasio} is called to conduct inference.
{title:Options}
{cmd:model}({it:string}) specifies a regression model.
{p 4 4 2}
This option is only relevant when {it:x} is present.
The dependent variable is
either {it:A} or {it:B}.
The default option is "no_interaction" between {it:z} and {it:x}.
When "interaction" is selected, full interactions between {it:z} and {it:x} are allowed.
{cmd:title}({it:string}) specifies a title.
{title:Remarks}
{p 4 4 2}
It is recommended to use this package{c 39}s command {bf:persuasio} instead of calling {bf:aprub} directly.
{title:Examples}
{p 4 4 2}
We first call the dataset included in the package.
{p 4 4 2}
. use GKB, clear
{p 4 4 2}
The first example estimates the upper bound on the APR without covariates.
{p 4 4 2}
. aprub voteddem_all readsome post
{p 4 4 2}
The second example adds a covariate.
{p 4 4 2}
. aprub voteddem_all readsome post MZwave2
{p 4 4 2}
The third example estimates the upper bound by the covariate.
. by MZwave2,sort: aprub voteddem_all readsome post
{title:Stored results}
{p 4 4 2}{bf:Scalars}
{p 8 8 2} {bf:e(N)}: sample size
{p 8 8 2} {bf:e(ub_coef)}: estimate of the upper bound on the average persuasion rate
{p 8 8 2} {bf:e(ub_se)}: standard error of the upper bound on the average persuasion rate
{p 4 4 2}{bf:Macros}
{p 8 8 2} {bf:e(outcome)}: variable name of the binary outcome variable
{p 8 8 2} {bf:e(treatment)}: variable name of the binary treatment variable
{p 8 8 2} {bf:e(instrument)}: variable name of the binary instrumental variable
{p 8 8 2} {bf:e(covariates)}: variable name(s) of the covariates if they exist
{p 8 8 2} {bf:e(model)}: regression model specification ("no_interaction" or "interaction")
{p 4 4 2}{bf:Functions:}
{p 8 8 2} {bf:e(sample)}: 1 if the observations are used for estimation, and 0 otherwise.
{title:Authors}
{p 4 4 2}
Sung Jae Jun, Penn State University, <sjun@psu.edu>
{p 4 4 2}
Sokbae Lee, Columbia University, <sl3841@columbia.edu>
{title:License}
{p 4 4 2}
GPL-3
{title:References}
{p 4 4 2}
Sung Jae Jun and Sokbae Lee (2019),
Identifying the Effect of Persuasion,
{browse "https://arxiv.org/abs/1812.02276":arXiv:1812.02276 [econ.EM]}
{title:Version}
{p 4 4 2}
0.1.0 30 January 2021