-
Notifications
You must be signed in to change notification settings - Fork 0
/
persuasio4ytz2lpr.sthlp
211 lines (129 loc) · 7.01 KB
/
persuasio4ytz2lpr.sthlp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
{smcl}
{title:Title}
{phang}{cmd:persuasio4ytz2lpr} {hline 2} Conduct causal inference on the local persuasion rate
for binary outcomes {it:y}, binary treatments {it:t} and binary instruments {it:z}
{title:Syntax}
{p 8 8 2} {cmd:persuasio4ytz2lpr} {it:depvar} {it:treatvar} {it:instrvar} [{it:covariates}] [{it:if}] [{it:in}] [, {cmd:level}(#) {cmd:model}({it:string}) {cmd:method}({it:string}) {cmd:nboot}(#) {cmd:title}({it:string})]
{p 4 4 2}{bf:Options}
{col 5}{it:option}{col 24}{it:Description}
{space 4}{hline 44}
{col 5}{cmd:level}(#){col 24}Set confidence level; default is {cmd:level}(95)
{col 5}{cmd:model}({it:string}){col 24}Regression model when {it:covariates} are present
{col 5}{cmd:method}({it:string}){col 24}Inference method; default is {cmd:method}("normal")
{col 5}{cmd:nboot}(#){col 24}Perform # bootstrap replications
{col 5}{cmd:title}({it:string}){col 24}Title
{space 4}{hline 44}
{title:Description}
{phang}{cmd:persuasio4ytz2lpr} conducts causal inference on causal inference on the local persuasion rate.
{p 4 4 2}
It is assumed that binary outcomes {it:y}, binary treatments {it:t}, and binary instruments {it:z} are observed.
This command is for the case when persuasive treatment ({it:t}) is observed,
using estimates of the local persuasion rate (LPR) via
this package{c 39}s command {cmd:lpr4ytz}.
{p 4 4 2}
{it:varlist} should include {it:depvar} {it:treatvar} {it:instrvar} {it:covariates} in order.
Here, {it:depvar} is binary outcome ({it:y}), {it:treatvar} is binary treatment,
{it:instrvar} is binary instrument ({it:z}), and {it:covariates} ({it:x}) are optional.
{p 4 4 2}
There are two cases: (i) {it:covariates} are absent and (ii) {it:covariates} are present.
{break} - Without {it:x}, the LPR is defined by
{cmd:LPR} = {Pr({it:y}=1|{it:z}=1)-Pr({it:y}=1|{it:z}=0)}/{Pr[{it:y}=0,{it:t}=0|{it:z}=0]-Pr[{it:y}=0,{it:t}=0|{it:z}=1]}.
{p 4 4 2}
The estimate and its standard error are obtained by the following procedure:
{break} 1. The numerator of the LPR is estimated by regressing {it:y} on {it:z}.
{break} 2. The denominator is estimated by regressing (1-{it:y})*(1-{it:t}) on {it:z}.
{break} 3. The LPR is obtained as the ratio.
{break} 4. The standard error is computed via STATA command {bf:nlcom}.
{p 4 8 2}5. Then, a confidence interval for the LPR is obtained via the usual normal approximation.
{break} - With {it:x}, the LPR is defined by
{cmd:LPR} = E[{cmd:LPR}({it:x}){e(1|x) - e(0|x)}]/E[e(1|x) - e(0|x)]
{p 4 4 2}
where
{p 4 8 2} {cmd:LPR}({it:x}) = {Pr({it:y}=1|{it:z}=1,{it:x}) - Pr({it:y}=1|{it:z}=0,{it:x})}/{Pr[{it:y}=0,{it:t}=0|{it:z}=0,{it:x}] - Pr[{it:y}=0,{it:t}=0|{it:z}=1,{it:x}]},
{p 4 4 2}
e(1|x) = Pr({it:t}=1|{it:z}=1,{it:x}), and e(0|x) = Pr({it:t}=1|{it:z}=0,{it:x}).
{p 4 4 2}
The estimate is obtained by the following procedure.
{p 4 4 2}
If {cmd:model}("no_interaction") is selected (default choice),
{break} 1. The numerator of the LPR is estimated by regressing {it:y} on {it:z} and {it:x}.
{break} 2. The denominator is estimated by regressing (1-{it:y})*(1-{it:t}) on {it:z} and {it:x}.
{break} 3. The LPR is obtained as the ratio.
{break} 4. The standard error is computed via STATA command {bf:nlcom}.
{p 4 8 2}5. Then, a confidence interval for the LPR is obtained via the usual normal approximation.
{p 4 4 2}
Note that in this case, {cmd:LPR}({it:x}) does not depend on {it:x} because of the linear regression model specification.
{p 4 4 2}
Alternatively, if {cmd:model}("interaction") is selected,
{p 4 8 2} 1. Pr({it:y}=1|{it:z},{it:x}) is estimated by regressing {it:y} on {it:x} given {it:z} = 0,1.
{p 4 8 2} 2. Pr[{it:y}=0,{it:t}=0|{it:z},{it:x}] is estimated by regressing (1-{it:y})*(1-{it:t}) on {it:x} given {it:z} = 0,1.
{p 4 8 2} 3. Pr({it:t}=1|{it:z},{it:x}) is estimated by regressing {it:t} on {it:x} given {it:z} = 0,1.
{p 4 8 2} 4. For each {it:x} in the estimation sample, both {cmd:LPR}({it:x}) and {e(1|x)-e(0|x)} are evaluated.
{p 4 8 2} 5. Then, the sample analog of {cmd:LPR} is constructed.
{p 4 8 2} 6. Finally, the bootstrap procedure is implemented via STATA command {cmd:bootstrap}.
{title:Options}
{cmd:model}({it:string}) specifies a regression model of {it:y} on {it:z} and {it:x}.
{p 4 4 2}
This option is only relevant when {it:x} is present.
The default option is "no_interaction" between {it:z} and {it:x}.
When "interaction" is selected, full interactions between {it:z} and {it:x} are allowed.
{cmd:level}(#) sets confidence level; default is {cmd:level}(95).
{cmd:method}({it:string}) refers the method for inference.
{p 4 4 2}
The default option is {cmd:method}("normal").
Since the LPR is point-identified, usual two-sided confidence intervals are produced.
{p 4 8 2}1. When {cmd:model}("interaction") is chosen as an option, it needs to be set as {cmd:method}("bootstrap");
otherwise, the confidence interval will be missing.
{cmd:nboot}(#) chooses the number of bootstrap replications.
{p 4 4 2}
The default option is {cmd:nboot}(50).
It is only relevant when {cmd:method}("bootstrap") is selected.
{cmd:title}({it:string}) specifies a title.
{title:Remarks}
{p 4 4 2}
It is recommended to use {cmd:nboot}(#) with # at least 1000.
A default choice of 50 is meant to check the code initially
because it may take a long time to run the bootstrap part.
The bootstrap confidence interval is based on percentile bootstrap.
Normality-based bootstrap confidence interval is not recommended
because bootstrap standard errors can be unreasonably large in applications.
{title:Examples}
{p 4 4 2}
We first call the dataset included in the package.
{p 4 4 2}
. use GKB, clear
{p 4 4 2}
The first example conducts inference on the LPR without covariates, using normal approximation.
{p 4 4 2}
. persuasio4ytz2lpr voteddem_all readsome post, level(80) method("normal")
{p 4 4 2}
The second example conducts bootstrap inference on the LPR.
{p 4 4 2}
. persuasio4ytz2lpr voteddem_all readsome post, level(80) method("bootstrap") nboot(1000)
{p 4 4 2}
The third example conducts bootstrap inference on the LPR with a covariate, MZwave2, interacting with the instrument, post.
{p 4 4 2}
. persuasio4ytz2lpr voteddem_all readsome post MZwave2, level(80) model("interaction") method("bootstrap") nboot(1000)
{title:Stored results}
{p 4 4 2}{bf:Matrices}
{p 8 8 2} {bf:e(lpr_est)}: (1*1 matrix) estimate of the local persuasion rate
{p 8 8 2} {bf:e(lpr_ci)}: (1*2 matrix) confidence interval for the local persuasion rate in the form of [lb_ci, ub_ci]
{p 4 4 2}{bf:Macros}
{p 8 8 2} {bf:e(cilevel)}: confidence level
{p 8 8 2} {bf:e(inference_method)}: inference method: "normal" or "bootstrap"
{title:Authors}
{p 4 4 2}
Sung Jae Jun, Penn State University, <sjun@psu.edu>
{p 4 4 2}
Sokbae Lee, Columbia University, <sl3841@columbia.edu>
{title:License}
{p 4 4 2}
GPL-3
{title:References}
{p 4 4 2}
Sung Jae Jun and Sokbae Lee (2019),
Identifying the Effect of Persuasion,
{browse "https://arxiv.org/abs/1812.02276":arXiv:1812.02276 [econ.EM]}
{title:Version}
{p 4 4 2}
0.1.0 30 January 2021