-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
362 lines (318 loc) · 12.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
from __future__ import print_function
import sys
from tqdm import tqdm
import time
import torch
import torch.optim as optim
import torch.nn as nn
from torchvision import datasets, transforms
import gc
import dataset
from utils import *
from cfg import parse_cfg
from darknet import Darknet
import argparse
FLAGS = None
unparsed = None
device = None
# global variables
# Training settings
# Train parameters
use_cuda = None
eps = 1e-5
keep_backup = 5
save_interval = 1 # epoches
dot_interval = 70 # batches
# Test parameters
evaluate = False
conf_thresh = 0.25
nms_thresh = 0.4
iou_thresh = 0.5
# Training settings
def load_testlist(testlist):
init_width = model.width
init_height = model.height
kwargs = {'num_workers': num_workers, 'pin_memory': True} if use_cuda else {}
loader = torch.utils.data.DataLoader(
dataset.listDataset(testlist, shape=(init_width, init_height),
shuffle=False,
transform=transforms.Compose([
transforms.ToTensor(),
]), train=False),
batch_size=batch_size, shuffle=False, **kwargs)
return loader
def main():
datacfg = FLAGS.data
cfgfile = FLAGS.config
weightfile = FLAGS.weights
data_options = read_data_cfg(datacfg)
net_options = parse_cfg(cfgfile)[0]
global use_cuda
use_cuda = torch.cuda.is_available() and (True if use_cuda is None else use_cuda)
globals()["trainlist"] = data_options['train']
globals()["testlist"] = data_options['valid']
globals()["backupdir"] = data_options['backup']
globals()["gpus"] = data_options['gpus'] # e.g. 0,1,2,3
globals()["ngpus"] = len(gpus.split(','))
globals()["num_workers"] = int(data_options['num_workers'])
globals()["batch_size"] = int(net_options['batch'])
globals()["max_batches"] = int(net_options['max_batches'])
globals()["learning_rate"] = float(net_options['learning_rate'])
globals()["momentum"] = float(net_options['momentum'])
globals()["decay"] = float(net_options['decay'])
globals()["steps"] = [float(step) for step in net_options['steps'].split(',')]
globals()["scales"] = [float(scale) for scale in net_options['scales'].split(',')]
#Train parameters
global max_epochs
try:
max_epochs = int(net_options['max_epochs'])
print("max_epochs",max_epochs)
except KeyError:
nsamples = file_lines(trainlist)
max_epochs = (max_batches*batch_size)//nsamples+1
print("max_epoch",max_epochs)
seed = int(time.time())
torch.manual_seed(seed)
if use_cuda:
os.environ['CUDA_VISIBLE_DEVICES'] = gpus
torch.cuda.manual_seed(seed)
global device
device = torch.device("cuda" if use_cuda else "cpu")
global model
model = Darknet(cfgfile, use_cuda=use_cuda)
model.load_weights(weightfile)
print("weights loaded")
model.print_network()
nsamples = file_lines(trainlist)
print("nsample",nsamples)
#initialize the model
if FLAGS.reset:
model.seen = 0
init_epoch = 0
else:
init_epoch = model.seen//nsamples
print("y",init_epoch)
global loss_layers
loss_layers = model.loss_layers
for l in loss_layers:
l.seen = model.seen
globals()["test_loader"] = load_testlist(testlist)
if use_cuda:
if ngpus > 1:
model = torch.nn.DataParallel(model).to(device)
else:
model = model.to(device)
params_dict = dict(model.named_parameters())
params = []
for key, value in params_dict.items():
if key.find('.bn') >= 0 or key.find('.bias') >= 0:
params += [{'params': [value], 'weight_decay': 0.0}]
else:
params += [{'params': [value], 'weight_decay': decay*batch_size}]
global optimizer
optimizer = optim.SGD(model.parameters(),
lr=learning_rate/batch_size, momentum=momentum,
dampening=0, weight_decay=decay*batch_size)
print(optimizer)
if evaluate:
logging('evaluating ...')
test(0)
else:
try:
print("Training for ({:d},{:d})".format(init_epoch, max_epochs))
fscore = 0
print(init_epoch,save_interval)
if init_epoch > save_interval:
mfscore = test(init_epoch-1)
else:
mfscore = 0.5
for epoch in range(init_epoch, max_epochs):
nsamples = train(epoch)
print(epoch,save_interval)
if epoch > save_interval:
fscore = test(epoch)
if (epoch+1) % save_interval == 0:
savemodel(epoch, nsamples)
if FLAGS.localmax and fscore > mfscore:
mfscore = fscore
savemodel(epoch, nsamples, True)
print('-'*90)
except KeyboardInterrupt:
print('='*80)
print('Exiting from training by interrupt')
def adjust_learning_rate(optimizer, batch):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
lr = learning_rate
for i in range(len(steps)):
scale = scales[i] if i < len(scales) else 1
if batch >= steps[i]:
lr = lr * scale
if batch == steps[i]:
break
else:
break
for param_group in optimizer.param_groups:
param_group['lr'] = lr/batch_size
return lr
def curmodel():
if ngpus > 1:
cur_model = model.module
else:
cur_model = model
return cur_model
def train(epoch):
global processed_batches
print("in train")
t0 = time.time()
cur_model = curmodel()
init_width = cur_model.width
init_height = cur_model.height
kwargs = {'num_workers': num_workers, 'pin_memory': True} if use_cuda else {}
train_loader = torch.utils.data.DataLoader(
dataset.listDataset(trainlist, shape=(init_width, init_height),
shuffle=True,
transform=transforms.Compose([
transforms.ToTensor(),
]),
train=True,
seen=cur_model.seen,
batch_size=batch_size,
num_workers=num_workers),
batch_size=batch_size, shuffle=False, **kwargs)
print(len(train_loader))
processed_batches = cur_model.seen//batch_size
lr = adjust_learning_rate(optimizer, processed_batches)
print(lr)
logging('epoch %d, processed %d samples, lr %e' % (epoch, epoch * len(train_loader.dataset), lr))
model.train()
t1 = time.time()
avg_time = torch.zeros(9)
for batch_idx, (data, target) in enumerate(train_loader):
t2 = time.time()
adjust_learning_rate(optimizer, processed_batches)
processed_batches = processed_batches + 1
#if (batch_idx+1) % dot_interval == 0:
# sys.stdout.write('.')
t3 = time.time()
data, target = data.to(device), target.to(device)
t4 = time.time()
optimizer.zero_grad()
t5 = time.time()
output = model(data)
t6 = time.time()
org_loss = []
for i, l in enumerate(loss_layers):
l.seen = l.seen + data.data.size(0)
ol=l(output[i]['x'], target)
org_loss.append(ol)
t7 = time.time()
#for i, l in enumerate(reversed(org_loss)):
# l.backward(retain_graph=True if i < len(org_loss)-1 else False)
# org_loss.reverse()
sum(org_loss).backward()
nn.utils.clip_grad_norm_(model.parameters(), 1000)
#for p in model.parameters():
# p.data.add_(-lr, p.grad.data)
t8 = time.time()
optimizer.step()
t9 = time.time()
if False and batch_idx > 1:
avg_time[0] = avg_time[0] + (t2-t1)
avg_time[1] = avg_time[1] + (t3-t2)
avg_time[2] = avg_time[2] + (t4-t3)
avg_time[3] = avg_time[3] + (t5-t4)
avg_time[4] = avg_time[4] + (t6-t5)
avg_time[5] = avg_time[5] + (t7-t6)
avg_time[6] = avg_time[6] + (t8-t7)
avg_time[7] = avg_time[7] + (t9-t8)
avg_time[8] = avg_time[8] + (t9-t1)
print('-------------------------------')
print(' load data : %f' % (avg_time[0]/(batch_idx)))
print(' cpu to cuda : %f' % (avg_time[1]/(batch_idx)))
print('cuda to variable : %f' % (avg_time[2]/(batch_idx)))
print(' zero_grad : %f' % (avg_time[3]/(batch_idx)))
print(' forward feature : %f' % (avg_time[4]/(batch_idx)))
print(' forward loss : %f' % (avg_time[5]/(batch_idx)))
print(' backward : %f' % (avg_time[6]/(batch_idx)))
print(' step : %f' % (avg_time[7]/(batch_idx)))
print(' total : %f' % (avg_time[8]/(batch_idx)))
t1 = time.time()
del data, target
org_loss.clear()
gc.collect()
print('')
t1 = time.time()
nsamples = len(train_loader.dataset)
logging('trained samples %d with %f samples/s' % (nsamples,nsamples/(t1-t0)))
return nsamples
def savemodel(epoch, nsamples, curmax=False):
cur_model = curmodel()
if curmax:
logging('save local maximum weights to %s/localmax.weights' % (backupdir))
else:
logging('save weights to %s/%06d.weights' % (backupdir, epoch+1))
cur_model.seen = (epoch + 1) * nsamples
if curmax:
cur_model.save_weights('%s/localmax.weights' % (backupdir))
else:
cur_model.save_weights('%s/%06d.weights' % (backupdir, epoch+1))
old_wgts = '%s/%06d.weights' % (backupdir, epoch+1-keep_backup*save_interval)
try: # it avoids the unnecessary call to os.path.exists()
os.remove(old_wgts)
except OSError:
pass
def test(epoch):
print("in test")
def truths_length(truths):
for i in range(50):
if truths[i][1] == 0:
return i
return 50
model.eval()
cur_model = curmodel()
num_classes = cur_model.num_classes
total = 0.0
proposals = 0.0
correct = 0.0
with torch.no_grad():
for data, target in tqdm(test_loader):
data = data.to(device)
output = model(data)
all_boxes = get_all_boxes(output, conf_thresh, num_classes, use_cuda=use_cuda)
for k in range(data.size(0)):
boxes = all_boxes[k]
boxes = np.array(nms(boxes, nms_thresh))
truths = target[k].view(-1, 5)
num_gts = truths_length(truths)
total = total + num_gts
num_pred = len(boxes)
if num_pred == 0:
continue
proposals += int((boxes[:,4]>conf_thresh).sum())
for i in range(num_gts):
gt_boxes = torch.FloatTensor([truths[i][1], truths[i][2], truths[i][3], truths[i][4], 1.0, 1.0, truths[i][0]])
gt_boxes = gt_boxes.repeat(num_pred,1).t()
pred_boxes = torch.FloatTensor(boxes).t()
best_iou, best_j = torch.max(multi_bbox_ious(gt_boxes, pred_boxes, x1y1x2y2=False),0)
# pred_boxes and gt_boxes are transposed for torch.max
if best_iou > iou_thresh and pred_boxes[6][best_j] == gt_boxes[6][0]:
correct += 1
precision = 1.0*correct/(proposals+eps)
recall = 1.0*correct/(total+eps)
fscore = 2.0*precision*recall/(precision+recall+eps)
logging("correct: %d, precision: %f, recall: %f, fscore: %f" % (correct, precision, recall, fscore))
return fscore
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--data', '-d',
type=str, default='cfg/voc.data', help='data definition file')
parser.add_argument('--config', '-c',
type=str, default='cfg/yolo_v3.cfg', help='network configuration file')
parser.add_argument('--weights', '-w',
type=str, default='yolov3.weights', help='initial weights file')
parser.add_argument('--reset', '-r',
action="store_true", default=False, help='initialize the epoch and model seen value')
parser.add_argument('--localmax', '-l',
action="store_true", default=False, help='save net weights for local maximum fscore')
FLAGS, _ = parser.parse_known_args()
main()