-
Notifications
You must be signed in to change notification settings - Fork 0
/
inference.py
254 lines (208 loc) · 11.6 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import os
import cv2
import torch
import numpy as np
from functools import partial
from utils.camera import Realsense
class D3RoMa():
def __init__(self, overrides=[], camera=None):
from config import TrainingConfig, setup_hydra_configurations
self.camera: Realsense = camera
setup_hydra_configurations()
from hydra import compose, initialize
with initialize(version_base=None, config_path="conf", job_name="inference"):
base_cfg = compose(config_name="config.yaml", overrides=overrides)
if base_cfg.seed != -1:
from utils.utils import seed_everything
seed_everything(base_cfg.seed) # for reproducing
config: TrainingConfig = base_cfg.task
self.camera.change_resolution(f"{config.image_size[1]}x{config.image_size[0]}")
self.pipeline = self._load_pipeline(config)
self.eval_output_dir = "_outputs"
if not os.path.exists(self.eval_output_dir):
os.makedirs(self.eval_output_dir, exist_ok=True)
from utils.utils import Normalizer
self.normer = Normalizer.from_config(config)
self.config = config
def _load_pipeline(self, config):
patrained_path = f"{config.resume_pretrained}"
if os.path.exists(patrained_path):
print(f"load weights from {patrained_path}")
from core.custom_pipelines import GuidedDiffusionPipeline, GuidedLatentDiffusionPipeline
clazz_pipeline = GuidedLatentDiffusionPipeline if config.ldm else GuidedDiffusionPipeline
pipeline = clazz_pipeline.from_pretrained(patrained_path).to("cuda")
# model = UNet2DConditionModel.from_pretrained(patrained_path)
pipeline.guidance.flow_guidance_mode=config.flow_guidance_mode
if config.sampler == "my_ddim":
from core.scheduler_ddim import MyDDIMScheduler
my_ddim = MyDDIMScheduler.from_config(dict(
beta_schedule = config.beta_schedule,
beta_start = config.beta_start,
beta_end = config.beta_end,
clip_sample = config.clip_sample,
num_train_timesteps = config.num_train_timesteps,
prediction_type = config.prediction_type,
set_alpha_to_one = False,
skip_prk_steps = True,
steps_offset = 1,
trained_betas = None
))
pipeline.scheduler = my_ddim
print(f"Careful! sampler is overriden to {config.sampler}")
else:
raise ValueError(f"patrained path not exists: {patrained_path}")
return pipeline
@torch.no_grad()
def infer(self, left: np.ndarray, right: np.ndarray, raw_depth: np.ndarray=None, rgb:np.ndarray=None):
"""Depth restoration with left, right and raw depth
Args:
left (np.ndarray): left (IR) image
right (np.ndarray): right (IR) image
raw (np.ndarray): raw depth image from camera sensors, unit is meter (optional)
rgb (np.ndarray): RGB image (optional) for point cloud visualization only
Returns:
np.ndarray: restored depth image, unit is meter
"""
assert len(left.shape) == len(right.shape)
assert left.dtype == right.dtype == np.uint8
if raw_depth is None or rgb is None:
raise NotImplementedError("no worry, i will implement this soon")
# assert raw.dtype == np.float32
# if len(raw.shape) == 2:
# raw = raw[...,None]
if len(left.shape) == 2:
# grayscale images
left = np.tile(left[...,None], (1, 1, 3))
right = np.tile(right[...,None], (1, 1, 3))
else:
left = left[..., :3]
right = right[..., :3]
left = cv2.resize(left, self.camera.resolution[::-1], interpolation=cv2.INTER_LINEAR)
right = cv2.resize(right, self.camera.resolution[::-1], interpolation=cv2.INTER_LINEAR)
left = torch.from_numpy(left).permute(2, 0, 1).float()
right = torch.from_numpy(right).permute(2, 0, 1).float()
if rgb is not None:
rgb = cv2.resize(rgb, self.camera.resolution[::-1], interpolation=cv2.INTER_LINEAR)
rgb = torch.from_numpy(rgb).permute(2, 0, 1).float()
raw_depth = cv2.resize(raw_depth, dsize=self.camera.resolution[::-1], interpolation=cv2.INTER_NEAREST)
if len(raw_depth.shape) == 3 and raw_depth.shape[-1] == 3:
raw_depth = raw_depth [...,0]
if len(raw_depth.shape) == 2:
raw_depth = raw_depth[...,None]
raw_depth = torch.from_numpy(raw_depth).permute(2, 0, 1).float()
assert self.config.prediction_space == "disp", "not implemented"
raw_disp = torch.zeros_like(raw_depth)
raw_valid = (raw_depth > 0)
raw_disp[raw_valid] = self.camera.fxb_depth / raw_depth[raw_valid]
normalized_raw_disp = self.normer.normalize(raw_disp)[0] # normalized sim disp
assert left.shape[1] % 8 == 0 and left.shape[2] % 8 == 0, "image size must be multiple of 8"
normalize_rgb_fn = lambda x: (x / 255. - 0.5) * 2
normalized_rgb = normalize_rgb_fn(rgb).to("cuda")
left_image = normalize_rgb_fn(left).to("cuda")
right_image = normalize_rgb_fn(right).to("cuda")
raw_disp = raw_disp.to("cuda")
def denormalize(config, pred_disps, raw_disp=None, mask=None):
from utils.utils import Normalizer
norm = Normalizer.from_config(config)
if config.ssi:
# assert config.depth_channels == 1, "fixme"
B, R, H, W = pred_disps.shape
# scale-shift invariant evaluation, consider using config.safe_ssi if the ssi computation is not stable
batch_pred = pred_disps.reshape(-1, H*W) # BR, HW
batch_gt = raw_disp.repeat(1, R, 1, 1).reshape(-1, H*W) # BR, HW
batch_mask = mask.repeat(1, R, 1, 1).reshape(-1, H*W)
if config.safe_ssi:
from utils.ransac import RANSAC
regressor = RANSAC(n=0.1, k=10, d=0.2, t=config.ransac_error_threshold)
regressor.fit(batch_pred, batch_gt, batch_mask)
st = regressor.best_fit
print(f"safe ssi in on: n=0.1, k=10, d=0.2, t={config.ransac_error_threshold}")
else:
print("directly compute ssi")
from utils.utils import compute_scale_and_shift
st = compute_scale_and_shift(batch_pred, batch_gt, batch_mask) # BR, HW
s, t = torch.split(st.view(B, R, 1, 2), 1, dim=-1)
pred_disps_unnormalized = pred_disps * s + t
else:
pred_disps_unnormalized = norm.denormalize(pred_disps)
return pred_disps_unnormalized
denorm = partial(denormalize, self.config)
mask = (raw_disp > 0).float().to("cuda")
self.pipeline.set_progress_bar_config(desc=f"Denoising")
# batchify
normalized_rgb = normalized_rgb.unsqueeze(0).repeat(self.config.num_inference_rounds, 1, 1, 1)
left_image = left_image.unsqueeze(0).repeat(self.config.num_inference_rounds, 1, 1, 1)
right_image = right_image.unsqueeze(0).repeat(self.config.num_inference_rounds, 1, 1, 1)
normalized_raw_disp = normalized_raw_disp.unsqueeze(0).repeat(self.config.num_inference_rounds, 1, 1, 1)
raw_disp = raw_disp.unsqueeze(0).repeat(self.config.num_inference_rounds, 1, 1, 1)
mask = mask.unsqueeze(0).repeat(self.config.num_inference_rounds, 1, 1, 1)
pred_disps = self.pipeline(normalized_rgb, left_image, right_image, normalized_raw_disp, raw_disp, mask,
num_inference_steps=self.config.num_inference_timesteps,
num_intermediate_images=self.config.num_intermediate_images, # T
add_noise_rgb=self.config.noise_rgb,
depth_channels=self.config.depth_channels,
cond_channels=self.config.cond_channels,
denorm = denorm
).images
if pred_disps.shape[0] > 1: # B is actually num_inference_rounds
uncertainties = np.zeros_like(raw_disp)
uncertainties[mask] = np.std(pred_disps.cpu().numpy(), axis=0)[mask]
else:
uncertainties = None
pred_disps_unnormalized = denormalize(self.config, pred_disps, raw_disp, mask)
pred_disps_unnormalized = pred_disps_unnormalized.mean(dim=0)
if True:
from utils.utils import compute_errors, metrics_to_dict, pretty_json
metrics = compute_errors(raw_disp[0].cpu().numpy(),
pred_disps_unnormalized.cpu().numpy(),
self.config.prediction_space,
mask[0].cpu().numpy().astype(bool),
[self.camera.fxb_depth])
metrics = metrics_to_dict(*metrics)
print((f"metrics:{pretty_json(metrics)}"))
pred_disps_unnormalized = pred_disps_unnormalized[0].cpu().numpy()
pred_depth = np.zeros_like(pred_disps_unnormalized)
pred_mask = (pred_disps_unnormalized > 0)
pred_depth[pred_mask] = self.camera.fxb_depth / pred_disps_unnormalized[pred_mask]
return pred_depth
if __name__ == "__main__":
from utils.camera import Realsense
camera = Realsense.default_real("fxm")
overrides = [
"task=eval_ldm_mixed",
"task.resume_pretrained=experiments/ldm_sf-mixed.dep4.lr3e-05.v_prediction.nossi.scaled_linear.randn.nossi.my_ddpm1000.SceneFlow_Dreds_HssdIsaacStd.180x320.cond7-raw+left+right.w0.0/epoch_0199",
"task.eval_num_batch=1",
"task.image_size=[360,640]",
"task.eval_batch_size=1",
"task.num_inference_rounds=1",
"task.num_inference_timesteps=10", "task.num_intermediate_images=5",
"task.write_pcd=true"
]
""" if False: # turn on guidance
overrides += [
"task.sampler=my_ddim",
"task.guide_source=raw-depth",
"task.flow_guidance_mode=gradient",
"task.flow_guidance_weights=[1.0]"
] """
droma = D3RoMa(overrides, camera)
from PIL import Image
from hydra.utils import to_absolute_path
left = np.array(Image.open(to_absolute_path("./assets/examples/0000_ir_l.png")))
right = np.array(Image.open(to_absolute_path("./assets/examples/0000_ir_r.png")))
raw = np.array(Image.open(to_absolute_path("./assets/examples/0000_depth.png"))) * 1e-3
rgb = np.array(Image.open(to_absolute_path("./assets/examples/0000_rgb.png")))
pred_depth = droma.infer(left, right, raw, rgb)
import matplotlib.pyplot as plt
cmap_spectral = plt.get_cmap('Spectral')
pred_depth_normalized = (pred_depth - pred_depth.min()) / (pred_depth.max() - pred_depth.min())
Image.fromarray((cmap_spectral(pred_depth_normalized)*255.)[...,:3].astype(np.uint8)).save(f"{droma.eval_output_dir}/pred.png")
if droma.config.write_pcd:
from utils.utils import viz_cropped_pointcloud
gt_depth_np = raw # [H,W]
gt_masks_np = raw > 0
gt_depth_np[~gt_masks_np] = 0.0
gt_depth_np = camera.transform_depth_to_rgb_frame(gt_depth_np) #if not alreay aligned
viz_cropped_pointcloud(camera.K.arr, rgb, gt_depth_np, fname=f"{droma.eval_output_dir}/raw.ply")
pred_depth = camera.transform_depth_to_rgb_frame(pred_depth)
viz_cropped_pointcloud(camera.K.arr, rgb, pred_depth, fname=f"{droma.eval_output_dir}/pred.ply")