-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLeetCode_146_LRU_Cache.cpp
72 lines (63 loc) · 1.85 KB
/
LeetCode_146_LRU_Cache.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
/*
146. LRU Cache
Design and implement a data structure for Least Recently Used (LRU) cache.
It should support the following operations: get and put.
get(key) - Get the value (will always be positive) of the key if the key exists
in the cache, otherwise return -1.
put(key, value) - Set or insert the value if the key is not already present.
When the cache reached its capacity, it should invalidate the least recently
used item before inserting a new item.
The cache is initialized with a positive capacity.
Follow up:
Could you do both operations in O(1) time complexity?
Example:
LRUCache cache = new LRUCache( 2 );
cache.put(1, 1);
cache.put(2, 2);
cache.get(1); // returns 1
cache.put(3, 3); // evicts key 2
cache.get(2); // returns -1 (not found)
cache.put(4, 4); // evicts key 1
cache.get(1); // returns -1 (not found)
cache.get(3); // returns 3
cache.get(4); // returns 4
*/
/* Use custom doubly linked list to get best performance */
class LRUCache {
int maxCapacity;
int currentCapacity;
unordered_map< int, int > hashMap;
list<int> deque;
public:
LRUCache( int _capacity ) {
maxCapacity = _capacity;
currentCapacity = 0;
}
int get( int key ) {
if( hashMap.find( key ) != hashMap.end() ) {
deque.remove( key );
deque.push_front( key );
return hashMap[key];
}
return -1;
}
void put( int key, int value ) {
if( hashMap.find( key ) != hashMap.end() ) {
if( hashMap[key] != value ) {
// value is not upto date
hashMap[key] = value;
deque.remove( key );
deque.push_front( key );
}
return;
}
if( currentCapacity < maxCapacity ) {
currentCapacity++;
} else {
hashMap.erase( deque.back() );
deque.pop_back();
}
hashMap[ key ] = value;
deque.push_front( key );
}
};